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A B S T R A C T

Sleep deprivation (SD) consistently degrades performance in tasks requiring sustained attention, resulting in
slower and more variable response times that worsen with time-on-task. Loss of motivation to exert effort may
exacerbate performance degradation during SD. To test this, we evaluated sustained performance on a vigilance
task, combining this with an effort-based decision-making task and pupillometry. Vigilance was tested at rest and
after sleep deprivation, under different incentive conditions (1, 5 or 15 cents for fast responses). Subsequently,
preference measures were collected from an effort-discounting task, in which a commensurate reward was of-
fered for maintaining attentional performance for different durations (1, 5, 10, 20 or 30min). Vigilance was
impaired during SD, in a manner modulated by reward value. Preference metrics showed that the value of
available rewards was discounted by task duration, an effect compounded by SD. Pupillometry revealed that
arousal was modulated during SD in a value-based manner, and moment-to-moment fluctuations in pupil dia-
meter were directly predictive of performance. Together, these data demonstrate that attentional performance
can be interpreted within a value-based effort allocation framework, such that the perceived cost of attentional
effort increases after sleep deprivation.

1. Introduction

Sleep deprivation (SD) adversely affects many cognitive functions
including memory, attention and decision making (Killgore, 2015;
Krause et al., 2017; Lim and Dinges, 2010). Sustained attention - the
ability to detect and respond to infrequently occurring target stimuli
over long durations (Mackworth, 1968) - is by far the most consistently
and severely affected cognitive domain (Goel et al., 2013; Lim and
Dinges, 2010; Lowe et al., 2017). As such, tests of sustained attention
have become integral in assessing behavior following sleep deprivation.

Even in a well-rested state, engaging sustained attention is sub-
jectively effortful, and performance demonstrates time-on-task de-
gradation (Warm et al., 2008) that is exacerbated by SD (Lim and
Dinges, 2008). Responses become slower, more variable, and are
punctuated by microsleeps (Basner and Dinges, 2011).

Neuroimaging studies show that prefrontal and parietal cortical
brain areas and subcortical areas (including thalamus, striatum and
midbrain) involved in supporting sustained attention (Langner and
Eickhoff, 2013) show diminished activation during SD that declines
over continued task performance (Asplund and Chee, 2013; Zhu et al.,
2017). In the traditional resource depletion account of vigilance per-
formance, degraded vigilance and reduced brain activation are marks of

reduced processing capacity in SD. The latter would arise from con-
tinuous engagement of task related neural circuits resulting in depletion
of the required resources to perform optimally (Warm et al., 2008).

The effects of such resource depletion might be exacerbated if
available resources are not optimally employed. While reward moti-
vation can improve sustained attention performance (Esterman et al.,
2014; Massar et al., 2016), fatigue from sleep loss and time-on-task may
affect the motivation to perform. Consequently, sleep deprived subjects
may choose to invest less effort into task performance and to withdraw
processing resources (Lim and Dinges, 2008; Mackworth, 1968). In-
terestingly, this idea fits well with recent theories in the field of effort-
based decision making whereby performance is influenced by a con-
tinuous cost-benefit analysis (Kurzban et al., 2013). According to this
framework, performance is dependent on a value-based decision to
invest effort into the task according to the value of associated rewards
(Kool and Botvinick, 2014; Westbrook and Braver, 2015). Although this
effort-allocation hypothesis has been proposed in several models of
fatigue and SD, systematic empirical investigation is lacking.

In the current study, we tested the value-based effort-allocation
hypothesis through three inter-related approaches. First, we examined
whether sustained attention performance is influenced by rewards
provided for successful task completion. For this purpose, participants
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performed a psychomotor vigilance task (PVT; Dinges and Powell,
1985) under three levels of reward. Importantly, we set out to test
whether performance decline due to SD and time-on-task would be
modulated in a value-based fashion. Secondly, we recorded pupil dia-
meter as a physiological marker of attentional effort and arousal. Lastly,
we used a formal effort-based decision-making task to test how SD state
and task duration were weighed into the decisions to engage in task
performance.

2. Methods

2.1. Participants

Twenty-six subjects were recruited from the university population
(mean age [stdev] = 22.8 y [3.5]; 16 females). All participants reported
to be healthy, non-smoker, have no history of neurological or psy-
chiatric disorder (including sleep disorders), and to not use any long-
term medication. Participants had regular habitual sleep schedules (i.e.
6:30–9 h/night) and did not qualify as extreme morning or evening-
type (Horne and Östberg, 1976). Objective sleep history was monitored
for 5 days prior to the experimental sessions using wrist actigraphy
(Actiwatch2; Philips Respironics; Andover, MA, USA).

2.2. Sleep deprivation procedures

Participants took part in two experimental sessions spaced about
one week apart in counterbalanced order. During the rested wakeful-
ness (RW) session, participants came into the lab in the evening and
were given 9 h of sleep opportunity (10 p.m.-7 a.m.). Experimental test
started at 8 a.m. the next morning. In the sleep deprivation (SD) session
participants arrived at the same time but were kept awake during the
night. Throughout the SD night participants performed hourly vigilance
test (grad-CPT; Esterman et al., 2013) and sleepiness ratings (Kar-
olinksa Sleepiness Scale; Gillberg et al., 1994). Test in the SD session
commenced at 6 a.m.

2.3. Motivated vigilance task

In both sessions, participants performed a sustained attention task
(Psychomotor Vigilance Task: PVT; Dinges and Powell, 1985) under
different reward conditions (See Fig. 1A). The test started with a
baseline run, in which no rewards were provided. Participants were
seated in front of a computer screen, with their head positioned on a
chinrest. They were instructed to fixate on a central dot, and to respond
as quickly as possible to the appearance of a running millisecond
counter (ISI: 2–10 s; uniformly distributed). After the baseline run,
participants performed three runs in which they earned rewards for fast
responses. In the low reward run they could earn 1 cent, in the medium

reward run they earned 5 cents, and in the high reward run they could
earn 15 cents per fast responses. All runs lasted for 10min, resulting in
approximately 80 trials per run (mean [stdev] = 79.6 [4.4]). The re-
sponse criterion for the rewarded runs was set to the median RT in an
individual's baseline run. A prior study using this procedure demon-
strated that performance improved in a value-dependent manner
(Massar et al., 2016). The order of the rewarded runs was counter-
balanced between subjects, but for each subject, this order was kept
fixed between the RW and SD sessions. Pupil size was continuously
monitored during performance of the attention task via an eyetracker
(Tobii X60; Tobii AB, Danderyn, Sweden).

2.4. Discounting task

To explicitly test whether participants incorporated the costs and
benefits of sustaining attention in their decisions, a discounting task
was performed, where monetary rewards were offered for performing
the PVT for a given duration (See Fig. 1B). Following the vigilance task
runs, participants were presented with a series of choices. On each trial,
they indicated their preference between performance of a short dura-
tion PVT for a small amount of money (Shorter Smaller or SS option), or
a longer duration PVT for a larger amount of money ($12; Longer
Larger or LL option). The reward amount for the SS option was varied
from trial to trial using an adjusting staircase for five consecutive
iterations (Libedinsky et al., 2013; Massar et al., 2015; Massar et al.,
2016). Indifference points were calculated as the average of the lowest
accepted SS amount and the highest rejected SS amount, for LL dura-
tions of 1, 5, 10, 20, and 30min (presented in intermixed fashion).
These points represent the SS value that individuals considered as
equally valuable as a $12 reward at the cost of performing the task at a
given LL task duration. This procedure was repeated twice resulting in a
total of 50 trials. Subjective values were calculated as the average of the
indifference points for each LL duration. The area under the resulting
discounting curve was quantified as a model-free summary metric of
the level of discounting (larger area under the curve denotes less steep
discounting; Myerson et al., 2001). Choices were incentive-compatible
and one randomly drawn choice was executed following the dis-
counting task (PVT was performed for the chosen duration, in return for
the indicated reward).

Discounting tasks are widely used in behavioral decision making as
a method to quantify the subjective costs of different decision variables
(e.g. risk, delay, effort; Green and Myerson, 2004; Kowal et al., 2007).
To ensure that participants in our study did not base their choices on
the costs of delayed rewards, they were instructed that after the choice
task, they had to stay in the lab for 30min. Their choices would de-
termine how much time, out of the 30min, they would spend on per-
forming the sustained attention task. However, irrespective of the PVT
duration, they would receive their reward only after 30min.

Fig. 1. Task procedures for the (A) Motivated Vigilance Task, participants performed 10min runs of the Psychomotor Vigilance Task under low, medium and high
reward conditions, and (B) Discounting Task, participants made sequential choices between task duration/reward options.
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Participants' understanding of this procedure was checked after verbal
instructions using visual analogue scales (See Supplementary
Materials). There was no indication that they had incorrect under-
standing of the instruction during either the RW or SD session. Data for
one subject was not correctly saved due to script error. Statistical
analysis is based on the remaining subjects (N= 25).

2.5. Pupillometry

Pupil diameter is influenced by the ascending arousal system and is
a sensitive indicator of sleepiness (Wilhelm et al., 1998). Pupil diameter
is also known to scale with cognitive effort (Kahneman, 1973), being
larger when participants are performing more difficult tasks (Kahneman
and Beatty, 1966), or if they are more engaged in performance
(Hopstaken et al., 2014). Pupil size was recorded during performance of
the Motivated Vigilance Task runs at a sampling frequency of 60 Hz.
Pupil diameter and variability were quantified as the mean and stan-
dard deviation in 40-sec moving windows (Fig. 2). Portions of missing
data due to blinks or eye-closures were linearly interpolated, and re-
sulting time series were low-pass filtered with a 10 Hz cut-off. Re-
cording failed for two subjects due to inability of the eye-tracker al-
gorithm to detect the pupil. Three more subjects had excessive artifacts
(> 60%) in at least one of the task runs. These subjects were excluded
from analysis. The final sample size for pupil analysis was N=21.

2.5.1. GLM analysis
To analyze the effects of sleep state, time-on-task and reward on

pupil diameter, average diameter and log-transformed standard devia-
tion of pupil diameter were quantified in 40 s sliding windows (step-size
= 12 s; See Fig. 2) (van den Brink et al., 2016) for each PVT run for
each subject. Data in each window were z-scored across all task runs for
each participant separately. Two separate GLM analyses were con-
ducted with diameter and variability as independent variables respec-
tively (See Fig. 5). Five separate regressors were included. One re-
gressor coded for the main effect of sleep state (RW=0, SD=1). Two
regressors coded the effect of time-on-task for the RW runs and for the
SD runs separately. Two additional regressors were included, coding for
the reward level per run in RW and in SD separately. At a second level,
individual parameter estimates (Beta-values) were contrasted against
zero (one sample t-tests), to determine whether each separate regressor
had a significant effect on pupil diameter. Furthermore, the effect of
sleep state on the parameter estimates for time-on-task and reward was
tested by directly contrasting their respective RW and SD estimates
(paired t-tests). This approach allowed us to extract parameter

estimates for the effects of time-on-task and of reward in RW and SD
separately, and thereby to directly contrast their contributions between
sleep states. Furthermore, it allowed us to apply identical analytical
approaches to pupil diameter and to pupil variability as dependent
variables.

2.5.2. Trial-by-trial analysis
To examine the moment-to-moment contribution of pupil diameter

to vigilance performance, the analysis was focused on the 1-second
window directly preceding the target stimuli. Trials were manually
checked for artifacts and only trials with minimal missing data within
the 1-sec pre-stimulus window were included in further analysis. This
left a minimum of 31 trials per run for all participants. Pupil diameter
and response speed for the remaining trials were z-scored across all task
runs for each participant separately, and linear trial-by-trial correla-
tions were calculated for each run and each subject separately.
Resulting correlation coefficients were Fisher-z transformed and com-
pared to zero (one-sampled t-tests) to examine whether there was any
systematic group-level correlation (positive or negative) between pre-
stimulus pupil diameter and response speed. Furthermore, to probe the
respective effects of sleep and motivation on these (Fisher-z trans-
formed) correlations, data were subjected to a Sleep state (RW, SD) x
Reward (1, 5, 15c) repeated measures ANOVA.

3. Results

3.1. SD-related performance decline is modulated by reward value

To determine how SD and reward affect performance in the
Motivated Vigilance Task we examined two metrics highly sensitive to
SD (Basner and Dinges, 2011), i.e. attentional lapses (responses with
RT>500ms) (Fig. 3, upper panels) and response speed (1/RT) (Fig. 3,
lower panels).

As expected, poorer performance during SD was characterized by
more lapses (F1,25 = 33.02, p < .001) and slower response speed (F1,25
= 76.40, p < .001) compared to RW. In addition, overall performance
was modulated by reward (lapses: F2,50 = 8.97, p < .001; response
speed: F2,50 = 18.25, p < .001), where better performance accom-
panied higher reward (Fig. 3, left panels).

Of interest, there was an interaction between state and reward
(lapses: F2,50 = 6.17, p= .004; response speed: F2,50 = 2.99,
p= .059). To interpret the found interactions, we quantified the size of
the SD-effect as the SD-RW difference score at each reward level (Fig. 3,
middle panels). Paired t-tests showed that the SD-effect was more

Fig. 2. Single-subject pupillometry analysis. (A) Raw pupillometry time series for example subject in RW (blue) and SD (red) in LOW reward condition. (B) Sliding
window time series for mean diameter.
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pronounced in the low reward runs compared to the higher reward runs
(lapses [low>med]: t25 = 2.89 p= .008; lapses [low>high]: t25 =
2.90 p= .008; response speed [low<high]: t25 = 2.45, p= .02).
These results suggest that, in the sleep deprived state, reward motiva-
tion can partially alleviate SD related performance decline.

Importantly, there was no evidence that faster performance in the
higher reward runs resulted from a lower response threshold. False start
responses (i.e. button presses in the absence of a target) did not increase
in number as a function of reward (F2,50 = 2.19, p= .12). If anything,
they showed a numerical decrease with higher rewards (See Suppl.
Fig. 1), showing that reward led to improved performance without
causing a speed-accuracy trade off (Manohar et al., 2015). Furthermore,
performance of the current sample was compared to that of an un-
rewarded control sample (N=76; previously reported in Yeo et al.,
2015). This analysis showed that while performance in the low reward
run was comparable to that of typical (un-incentivized) performance,
faster response speed and fewer lapses were found in the medium and
high reward runs (See Suppl. Fig. 2).

3.2. Performance decline due to time-on-task is modulated by sleep state
and reward value

A characteristic of sustained attention tasks is that performance
declines with time-on-task. One explanation for this observation is the
depletion of cognitive resources, that is typically exacerbated by SD
(Lim and Dinges, 2008). To examine whether reward motivation could
influence time-on-task decline in the RW and SD states, we extracted
linear trend coefficients for response speed over time-on-task in each
task run (Fig. 3, right panels). Performance declined with time-on-task
in all conditions, and this decline was steeper during SD compared to
RW (F1,25 = 10.29, p= .004). Time-on-task related performance de-
crement was significantly attenuated by higher reward in both states
(F2,50 = 4.89, p= .01), indicating that value-based allocation of

resources provides a compelling alternative to a pure resource depletion
account of performance dynamics under sleep deprivation or increasing
time-on-task.

3.3. Subjective value of attentional performance is reduced during SD

3.3.1. Model-free analysis
In the discounting task, individuals’ subjective value of the offered

reward amount was determined from the point at which they were
indifferent between the SS amount and the LL amount, at different
durations of the proposed PVT. These indifference points were plotted
on a discounting curve (Fig. 4A), and showed an overall decrease of
subjective value with longer proposed task duration. The area under the
discounting curve (a summary metric of the extent of discounting) was
significantly reduced during SD compared to RW (t24 = 2.12, p= .04;
Fig. 4 B&C). Participants thus considered the larger reward subjectively
less valuable if they had to perform the sustained attention task for a
longer duration, particularly during SD.

3.3.2. Model-based analysis
An issue of contemporary interest is whether the discount function

associated with effort-based decision making follows the same shape as
that found in delay discounting (Białaszek et al., 2017; Chong et al.,
2017; Klein-Flügge et al., 2016, 2015). In order to explore this, we
fitted different discounting models to the individual choice data (See
Supplementary Materials for details). The choice data were best ex-
plained by a sigmoid model (Fig. 4D-E; as proposed for effort-dis-
counting by Klein-Flügge et al., 2015). Resulting model parameters
were square root transformed to correct for non-normality (Peters et al.,
2012) and compared between sleep states. The p-parameter (inflection
point) was shifted leftwards after sleep deprivation (i.e. participants
started discounting at shorter proposed durations of task performance;
t24 = 2.13, p= .04; see Fig. 4F). This corroborated the findings of
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model-free analysis, showing that participants show a systematic shift
in their willingness to perform the PVT for longer durations during SD.
Additionally, the beta-parameter was found to be significantly lower in
SD compared to RW (t24 = 2.10, p= .047), indicating that choices
were less strictly based on the subjective value function (more random)
in SD. No difference in the slope of the sigmoid function (k-parameter)
were found between sleep states (t24 = .10, p= .92).

3.4. Pupil diameter reveals value-based effort allocation during attentional
performance

The influence of sleep state, reward and time-on-task were analyzed
using a general linear model (GLM; Fig. 5). Results showed that overall
pupil diameter did not significantly differ between RW and SD runs (t20
= −1.5, p= .15). However, as with the behavioral findings, pupil
diameter decreased with time-on-task, both in RW (t20 = −5.86,
p < .001) and in SD (t20 = −2.95, p= .008). Central to the current
investigation, pupil diameter was significantly modulated by reward in
SD (t20 = 4.42, p < .001), but not in RW (t20 = 1.38, p= .18). A
direct contrast (equivalent to a Reward × Sleep state interaction)
confirmed that reward modulation was stronger in the SD runs com-
pared to the RW runs (t20 = 2.14, p= .045). In contrast, pupil varia-
bility was affected by SD and time-on-task, but was not meaningfully
modulated by reward motivation (See Suppl. Fig. 3). These findings

suggest that participants could regulate their arousal levels in a value-
based manner, particularly during a low arousal state such as SD. Such
arousal regulation likely reflects the allocation of attentional effort to
uphold performance.

3.5. Pre-stimulus pupil diameter predicts trial-by-trial response speed

To test whether fluctuations in pupil diameter were related to per-
formance, trial-by-trial baseline diameter was extracted from a 1-
second window directly prior to target presentation (Fig. 6A). For each
task run, the trial-by-trial correlation between pre-stimulus diameter
and response speed was calculated (Fig. 6B), and at a group level, the z-
transformed r-values were compared to zero (Fig. 6C). There was a
positive correlation between pre-stimulus pupil diameter and response
speed. Trials with larger baseline pupil sizes were associated with faster
responses. Interestingly, these associations were stronger in SD com-
pared to RW (F1,20 = 17.82, p < .001), and with a marginally sig-
nificant reduction with higher reward levels (F2,50 = 3.0, p= .064).

4. Discussion

In this study, we examined how the value-based allocation of at-
tentional effort influences sustained attention performance after sleep
deprivation. Results from the motivated vigilance task showed that

Fig. 4. Behavioral preference in the Discounting Task, with (upper pannels) model-free analysis, and (lower panels) model-based analysis. (A) discounting curves in
RW and SD, (B) Group average area under the Discounting Curves for RW and SD ( ± SEM; AUC = area under the curve), and (C) distribution of individual RW-SD
difference (SV = Subjective Value). D & E) Individual (grey lines) and average model fits in RW (blue line) and SD (red line). F) Average model fits (dotted line
indicates shifted inflection point from RW to SD).
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performance was modulated based on the incentive value. Both overall
performance and maintenance over time improved with higher re-
wards. Strikingly, this reward-modulation effect was more pronounced
after SD compared to RW. This indicates that impaired vigilance after
SD is the combined result of reduced attentional capacity, and dimin-
ished motivation, rather than only a capacity reduction (or depletion of
resources). This behavioral pattern was closely paralleled by pupillo-
metric data, showing a value-based reward modulation that was mainly
apparent during the SD session. Previous research has shown that SD
can result in increased reward-related brain activation (Gujar et al.,
2011; Mullin et al., 2013; Venkatraman et al., 2007, 2011). Finally, a
formal test of effort-based decision making indicated that participants
devalued a given reward, in accordance to the required task duration
particularly during SD. These findings support the hypothesis that,
performance in tasks high in attention demands involve balancing cost
of effort required to maintain alertness, and the benefit of attaining a
rewarded outcome (Kurzban et al., 2013). Our findings indicate that
this effort/value weighing function is shifted during SD, such that at-
tentional effort is allocated preferentially to tasks that are deemed
sufficiently valuable. We posit that this effect of SD on effort allocation
reflects a motivational deficit that may exacerbate the well-known
detrimental effects of SD on ‘processing capacity’.

4.1. A neuro-economic framework of motivational decline under SD

Although reduced motivation is a commonly observed consequence
of SD, there has been little systematic research into its effects. One
reason for this is that motivation is a subjective construct that is hard to
quantify other than by self-report. In recent years, a growing body of
literature has adopted the view that motivation reflects the willingness
to exert effort to reach performance goals (Chong et al., 2016). Specific
tasks have been developed to quantify this (i.e. effort-based decision-
making tasks). By making incentive-compatible choices about effortful
courses of behavior, individuals weigh the costs of effort against the
value of the potential gains (Kool and Botvinick, 2014; Westbrook and
Braver, 2015), and compute a subjective value of the effortful choice. A
decision to engage in effortful action tends to follow only if the reward
is deemed sufficiently valuable. A specific neural circuitry is involved in
making such computations (including ACC and anterior insula; Prevost
et al., 2010). Using such an effort-based decision-making task, our
findings suggest that SD devalues the benefit of exerting effort.

Effort-based decisions are heavily influenced by motivational fac-
tors, and affected in conditions characterized by a loss of motivation
(e.g. Major Depression Disorder, anhedonia, apathy; Clery-Melin et al.,
2011; Hershenberg et al., 2016; Treadway et al., 2012). Furthermore,
they are susceptible to the limits of cognitive capacity. Westbrook et al.
(2013) found that elderly discounted effortful rewards more strongly
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than young adults. In the context of sleep deprivation, a few experi-
mental studies have looked at changes in effort allocation. Engle-
Friedman et al. (2003) found that sleep-deprived subjects tended to
prefer performing less effortful mathematics problems compared to a
group of well-rested subjects. In an earlier study from our lab, we found
that sleep deprived subjects discounted the value of monetary rewards
more strongly than well rested ones if the rewards were contingent on
performance on an effortful typing task. In contrast sleep deprivation
did not alter behavior in a delay-discounting task (Libedinsky et al.,
2013).

Our current data concur and suggest that, under SD, the subjective
value of effortful attentional performance is diminished, leading sub-
jects to withdraw processing resources from performance if rewards are
not sufficiently high. It is interesting to note that several theoretical
models of performance decline with fatigue (not specific to SD) have
proposed a very similar role for priority-based resource allocation
processes in performance maintenance (Boksem and Tops, 2008;
Hockey, 1997; Kanfer and Ackerman, 1989).

4.2. Task duration as an effort-related cost

When evaluating the cost of effort in decision making, it is im-
portant to separate the influence of effort from other potential costs
(e.g. temporal delay or risk; Apps et al., 2015; Kool and Botvinick,
2014). In the effort-based decision task used here, effort was defined as
the proposed duration of PVT performance following the choice task.
While it is clear that sustaining attention for longer time is experienced
as more effortful (Warm et al., 1996), some points must be noted. First
of all, in this portion of the experiment, participants were rewarded
based on the accepted duration of performance, not based on perfor-
mance level (e.g. response speed/accuracy). This procedure has the
advantage that it removes the risk of not getting the full reward (i.e.
probability discounting) from participant's choice behavior. However,
the exact level of performance (i.e. effort invested in task performance)
is not controlled for. By using task duration as a measure of effort,

temporal discounting may be introduced into choice behavior. Previous
reports indicate no change in temporal discounting after SD (Acheson
et al., 2007; Libedinsky et al., 2013; Massar and Chee, 2015), but we
took pains to minimize the influence of time by equating the experi-
ment duration (i.e. fixing the delay to reward to 30min). Interestingly,
the resulting discounting curve followed a shape that has previously
been associated with effort discounting (sigmoid) rather than temporal
or probability discounting (Klein-Flügge et al., 2015).

4.3. Reward-based pupil modulation reflects volitional regulation of arousal

Pupillometric variables are known to be sensitive to manipulations
of sleep state and arousal, showing smaller diameter and higher
variability after SD (Wilhelm et al., 1998; Yoss et al., 1970). Pupil
diameter reflects the dynamic interplay between the effects of sympa-
thetic and parasympathetic inputs (Lowenstein and Loewenfeld, 1964),
fluctuating with activity in the norepinephrinergic (NE) Locus Coer-
ouleus (LC) in animals (Joshi et al., 2016; Reimer et al., 2016), and in
human resting state fMRI (Murphy et al., 2014). The correlation be-
tween pupil fluctuations and LC activity is potentially established
through a common arousal regulation pathway, originating from the
ventrolateral medulla (Nieuwenhuis et al., 2011). Pupil diameter cor-
responds with the (attentional) effort that a subject is exerting
(Kahneman, 1973). Larger pupil size is reflective of higher task diffi-
culty (Kahneman and Beatty, 1966), task engagement and reward
motivation (Hopstaken et al., 2014). Notably, evidence from animal
electrophysiology shows that such effort-related increase in pupil dia-
meter is associated with increased LC activation (Varazzani et al.,
2015).

In the present study we found that, during SD, pupil diameter was
modulated in a value-based manner. This suggests that participants
were able to volitionally regulate their arousal levels to meet the task
goals. The observed modulation presumably reflects the top-down
regulation of brainstem arousal areas (including the LC), by higher
cortical areas (Coull, 1998). Regions such as the ACC and anterior
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insula, which are also involved in effort valuation, are thought to im-
plement such top-down control, as they are consistently activated
during the execution and anticipation of effortful tasks (Croxson et al.,
2009; Engstrom et al., 2015). Interestingly, a recent study found that
dynamic pupil dilations after sleep restriction correlate with activation
in the brain's salience network (including ACC and anterior insula;
Schneider et al., 2016). The authors proposed that top-down regulation
of arousal, in order to maintain wakefulness, could be a possible me-
chanism underlying this correlation. Our current data support this in-
terpretation, showing that SD-related decline in arousal can be coun-
tered if one is sufficiently motivated.

4.4. Trial-by-trial pupil fluctuations are predictive of performance

Besides the modulation of tonic pupil diameter, the sleep deprived
state was further characterized by a high variability in pupil diameter
over time. These fluctuations in arousal became more pronounced with
time-on-task and importantly, were directly related to fluctuations in
performance. This closely aligns with the idea that increased behavioral
variability after SD reflects unstable maintenance of the wake state due
to mounting homeostatic sleep pressure and the intrusion of sleep-in-
itiating mechanisms (wake state-instability; Doran et al., 2001). It is
important to note that overall, pupil variability was not significantly
modulated by reward. Alternating periods of low and high arousal oc-
curred across all levels of reward. It is therefore plausible that moti-
vated effort can partially counter declining arousal while one is awake,
but cannot fully prevent the occurrence of micro-sleeps (Horne and
Pettitt, 1985).

Other studies reporting the relationship between pupil size and
performance have yielded mixed findings. To date, studies have re-
ported positive (van den Brink et al., 2016), negative (Gilzenrat et al.,
2010; Unsworth and Robison, 2016), and U-shaped correlations
(Murphy et al., 2011; van den Brink et al., 2016). Most studies however,
have been performed in the well-rested state, describing only a narrow
range of arousal. In the current study, correlations were stronger in SD
compared to RW. It is therefore possible that the relatively smaller
variability in RW performance and pupil diameter impairs estimation of
the pupil-performance association. Alternatively, it is possible that as-
sociation between arousal and performance is non-linear. Theories
about LC-NE activity have proposed that performance follows an in-
verted U-shape, with poor performance at low arousal levels, optimal
performance at intermediate arousal levels and declining performance
at very high arousal levels (Aston-Jones and Cohen, 2005). It is likely
that the SD manipulation in the current study drives the subjects to-
wards the lower end of the arousal spectrum. Within this range (before
the peak of the inverted U), positive correlations would be more ex-
pected. In line with this interpretation, correlations were found to be
stronger (more positive) in the SD state compared to RW.

5. Conclusions

The primary aim of this study was to systematically examine how
motivational shifts due to SD affect sustained attention performance.
Using traditional response time metrics, and novel discounting
methods, we found that the willingness to exert attentional effort is
reduced during SD. This was evident from the reduced subjective value
of performance-related rewards, and a more preferential allocation of
resources to high-value tasks runs. SD-related performance deficits
could be partially mitigated if higher rewards were available.
Pupillometric data showed that reward motivation was associated with
a regulation of arousal that was directly linked to performance im-
provement. In all, the current findings provide clear evidence that part
of the detrimental effects of SD on sustained attention performance are
attributable to reduced motivation. Such a measured approach to effort
allocation may be particularly important when processing resources are
scarcer due to SD.
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