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A B S T R A C T

A night of total sleep deprivation (TSD) reduces task-related activation of fronto-parietal and higher visual
cortical areas. As this reduction in activation corresponds to impaired attention and perceptual processing, it
might also be associated with poorer memory encoding. Related animal work has established that cortical
columns stochastically enter a 'down' state in sleep deprivation, leading to predictions that neural representa-
tions are less stable and distinctive following TSD. To test these predictions participants incidentally encoded
scene images while undergoing fMRI, either during rested wakefulness (RW) or after TSD. In scene-selective
PPA, TSD reduced stability of neural representations across repetition. This was accompanied by poorer
subsequent memory. Greater representational stability benefitted subsequent memory in RW but not TSD. Even
for items subsequently recognized, representational distinctiveness was lower in TSD, suggesting that quality of
encoding is degraded. Reduced representational stability and distinctiveness are two novel mechanisms by
which TSD can contribute to poorer memory formation.

Introduction

Sleep plays an important role in the formation and consolidation of
declarative memories (Gais et al., 2006, 2007; Rasch and Born, 2013;
Stickgold, 2005) and its deprivation results in poorer memory of
previously learned material (Chernik, 1972; Gais and Born, 2004;
Gais et al., 2006; Plihal and Born, 1997). Reduced hippocampal
activation possibly from saturation of storage capacity, is a possible
mechanism for poorer declarative memory formation following sleep
deprivation (Van Der Werf et al., 2009; Yoo et al., 2007). To date,
research on sleep and memory (Diekelmann and Born, 2010; Paller
and Voss, 2004) has primarily focused on how sleep facilitates the
gradual transfer of memories from the hippocampus to long-term
storage in neocortical areas. However, in addition to its role as a short-
term memory store, the hippocampus also indexes and binds cortical
representations of memories (Nadel and Moscovitch, 1997, 1998).
Relative to the multiple studies on consolidation, far less attention has
been directed to the effect of sleep on memory encoding, and
specifically, how neocortical inputs to the hippocampus and their
disruption following sleep deprivation might be contributory.

Given these points, a clearer understanding of neocortical con-
tributions to memory encoding in sleep-deprived persons might benefit
from exploring the ramifications of reduced task-related cortical

activation. Reduced activation occurs in fronto-parietal areas that
mediate top-down control of attention, and in higher visual cortex
responsive to these control signals (Chee and Chuah, 2007; Chee et al.,
2011; Tomasi et al., 2009). Insofar as cortical activation in higher
visual areas corresponds to the deployment of selective attention and
its resultant enhancement of perceptual processing (Corbetta and
Shulman, 2002), higher visual cortical activation might also result in
more robust memory formation. Conversely, reduced activation in
higher visual areas might correspond to a less durable memory of a
stimulus.

Beyond activation magnitude, another potential influence on the
durability of memory is the stability with which a given ensemble of
neurons is consistently recruited during task performance (Ward et al.,
2013; Xue et al., 2010). In the sleep-deprived brain, lower task-related
activation has been taken to indicate fewer neurons being active at any
given time (Chee and Chuah, 2007; Chee et al., 2011). Critically,
activated neurons in the sleep-deprived brain appear to change from
moment to moment, there being random dropout of neural activity
involving different cortical columns at different times (Vyazovskiy
et al., 2011). This ‘local sleep’, where different cortical columns
randomly enter a ‘down state’ is accompanied by an increase in
behavioral lapses in sleep-deprived animals (Vyazovskiy et al., 2011),
and has also been recently reported in humans (Bernardi et al., 2015;
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Hung et al., 2013). Sleep deprivation might therefore reduce the
stability of neural activation patterns elicited by repeated presentation
of the same stimulus (Fig. 1).

While behavioral measures have shown a quantitative reduction in
items well encoded following sleep deprivation (Yoo et al., 2007), it
remains unclear how memory for learned material is qualitatively
inferior to items encoded in the well-rested state. Fine-grained
neuroimaging measures of neocortical representations might shed light
on how sleep deprivation affects the quality of memory encoding. To
this end, we utilized two measures associated with multivoxel pattern
analysis of fMRI data to measure the ‘quality’ of memories encoded in
sleep-deprived persons.

The first measure, pattern similarity (PS), examines the correlation
in neural responses across repetition of the same stimulus (Xue et al.,
2010, 2013) and can be considered as an index of stability in neural
activation patterns. PS has been shown to be predictive of subsequent
encoding, and is thought to benefit memory through the provision of
consistent input to the hippocampus (Xue et al., 2013). The second
measure, ‘exemplar distinctiveness’ evaluates item-specific (as distinct
from category-specific) differences in activation when different pictures
within the same category are shown. This was evaluated by comparing
each item's self similarity (PS) to its similarity to other exemplars from
the same category. We hypothesized that sleep deprived participants
would show both lower pattern similarity and exemplar distinctiveness
within scene selective cortical regions during encoding, contributing to
poorer subsequent recognition performance compared to participants
who slept normally.

To test these predictions, we studied healthy young adult partici-
pants following a night of normal sleep or after a night of total sleep
deprivation. While undergoing fMRI, they made categorical judge-
ments on scene pictures that were repeated after a few trials.
Recognition memory was evaluated via a surprise recognition test
administered approximately 45 min after the last scan. We examined
three scene selective ROIs (PPA: Parahippocampal place area (Epstein
and Kanwisher, 1998), TOS: Transverse occipital sulcus (Hasson et al.,
2003) and RSC: Retrosplenial cortex (Maguire, 2001), and their
associated neural activation patterns for pattern similarity and item
distinctiveness across the two groups.

Materials and methods

Participants

Forty-eight healthy right-handed adult participants were recruited
after giving informed consent concerning a study protocol approved by

the Institutional Review Board of the National University of Singapore.
These participants were then randomly assigned to Rested
Wakefulness (RW) or Total Sleep Deprivation (TSD) groups but this
information was given to them only after they entered the laboratory
for their test session. Eligible participants had to be without any history
of psychiatric, neurological and/or sleep disorders and did not exhibit
strong morningness or eveningness preference. They were required to
maintain a regular sleep-wake schedule (6.5–9 h of sleep a night,
sleeping before 0030 h and waking before 0900 h) for the entire
duration of the study. Adherence to the sleep schedule and total sleep
time was measured by wrist actigraphy (Actiwatch, Philips Respironics,
USA). All participants adhered to the sleep schedule. There was no
significant difference in total sleep time (TST) (t(43)=−0.38, p=0.71,
d=0.11; RW: M=6.93 h, SD=0.61 h; TSD: M=6.99 h, SD=0.56 h) or
sleep efficiency (t(43)=−0.58, p=0.57, d=−0.08; RW: M=86.3%,
SD=6.5%; TSD: M=87.5%, SD=6.8%) between RW and TSD groups
immediately prior to imaging. Participants abstained from caffeine,
medication and alcohol 24 h prior to their experimental session.

Procedure

Participants visited the laboratory on three separate occasions, with
each session separated from another by at least one week. The first
session was a briefing session, where participants were informed about
the study procedures and requirements. They then underwent a
functional localizer scan and wore a wrist actigraph for the entire
duration of the study.

Participants assigned to the RW group entered the lab at 2000 h
and had a 9 h sleep opportunity (2200–0700 h) before their experi-
mental session (Total Sleep time: M=7.6 h, SD=0.65 h; Sleep effi-
ciency: M=85.7%, SD=7.8%). Participants in the TSD group entered
the lab at 1900 h and were kept awake under constant supervision by
research personnel until the end of the session.

Incidental encoding task

Materials
320 colored scene images were selected for this experiment from

the LabelMe image database (Russell et al., 2007), with 160 Indoor
scenes (Living rooms and Restaurants) and 160 outdoor scenes
(Forests and City streets). The images were divided into 2 sets of 160
images (40 from each scene category), with half designated as targets,
and the other half as foils. Image sets were counterbalanced across
participants.

Experimental task

The fMRI experiment, utilized a slow event related design, with
each trial lasting 12 s. The long interval between events was intended to
reduce collinearity in model estimation, allowing for the examination of
activation patterns of individual events (De Martino et al., 2008).

Each trial started with the presentation of a scene image for 3 s.
Participants were required to make an indoor/outdoor judgment by
pressing one of two buttons with their index or middle finger (counter-
balanced across participants). This was followed by a sensorimotor
baseline task (Stark and Squire, 2001), where arrows were presented
for 200 ms each (ISI: 1300 ms), and participants indicated the direc-
tion of the arrow via a button press with the index (left arrow) or
middle (right arrow) finger of their right hand (Accuracy–RW:
M=98.5% SD=1.3%; TSD: M=89.8% SD=4.1%). The arrow judgment
task sought to limit further encoding of the scene images (Ward et al.,
2013) and served as the baseline for fMRI analysis (Fig. 2A).

Participants underwent 10 scanning runs each lasting 398 s, during
which they were presented with 160 scene images (16 in each run), each
presented twice with 3–8 trials (M=6.5) between repeated presentations.
No images were repeated across runs. Each run lasted 398 s.

Fig. 1. Schematic showing how local sleep can affect neural activation patterns. In RW, a
higher number of functional nodes gives rise to more robust perceptual representations.
In TSD, a reduced number of functional units/nodes could degrade the quality of a
sensory representation. The stochasticity of local sleep can result in reduced representa-
tional stability across repeated presentations of the same stimulus. Activated nodes are
depicted by filled circles, with a darker fill reflecting stronger activation. The highlighted
area indicates units/nodes that are crucial for primary task performance.
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Post-scan behavioral task

A surprise recognition test was conducted approximately 45 min
after the final scan (An additional recognition test was conducted 1
week after the encoding session, but further analysis was not per-
formed as recognition in the TSD group was at chance level). During
the recognition task, participants were shown a total of 160 scene
images (80 old and 80 category matched novel foils). They were
required to rate the presented images on a scale of 1–5 (1: Did not
see before, 3: Unsure, 5: Definitely saw before), indicating how
confident they were that a given scene was shown during scanning
(Fig. 2B).

To ensure that forgetting was not simply a result of attentional
lapses during encoding, subsequent analyses included only images that
were correctly responded to on both encoding presentations. During
recognition, items with ratings of 4 and 5 were classified as hits, while
items rated 1 or 2 were classified as misses. Items that were rated as 3
(‘Unsure’) were excluded from subsequent analyses. Recognition
performance was measured using a sensitivity index A’, where a value
of 0.5 indicates chance performance in the separation of Old and Novel
items (Stanislaw and Todorov, 1999).

Functional localizer task

A separate functional localizer scan was acquired to identify

participant-specific PPA, RSC and TOS. The functional localizer task
utilized a block design where alternating blocks of faces or scenes were
presented with an interval of 16 s. Each block lasted for 16 s, and 8
images were presented for 400 ms each with an ISI of 1600 ms.
Participants were required to indicate if the Faces were male or female,
and if the Scenes were indoor or outdoor. Scene images used were
selected from categories not used in the memory tasks to minimize
interference effects.

Image acquisition and preprocessing

MR images were acquired on a 3 -Tesla MAGNETOM Prisma
systems (Siemens, Erlangen, German). Ten runs comprising 199
functional-MRI volumes each (first 4 volumes were discarded for T1-
stabilization), were acquired for each participant using a gradient echo-
planar imaging (EPI) sequence with 36 axial slices (slice thickness
3mm), using the following parameters: TR, 2000 ms; TE, 30 ms; flip
angle 90°; FOV 192*192 mm; matrix 64*64; voxel size, 3.0 mm
isotropic. Duration 398 s/run.

The same EPI sequence was used for the functional localizer scan,
with the sole difference being the number of volumes collected (257
volumes). High-resolution anatomical reference images were acquired
using an MPRAGE sequence (TR 2300 ms; TI 900 ms; flip angle 9°;
BW 240 Hz/pixel; voxel size 1.0 mm isotropic).

Images were realigned to the first image of the functional run using

Fig. 2. Task schematics and behavioral results. In the encoding task (A, upper panel) participants indicated whether they saw an indoor or outdoor scene. They then indicated the
direction of sequentially presented arrows (200 ms each, 1300 ms ISI). Accuracy of indoor/outdoor judgments during the encoding task was significantly higher in the RW group; RT
was similar across groups (A, lower panel). During recognition (B, upper panel), participants indicated on a 5-point scale how confident they were that the image presented was one they
had seen earlier during scanning. Recognition was measured using A’ (B, lower panel) and was significantly above chance for both the RW and TSD groups. As expected, the RW group
performed significantly better than the TSD group. Error bars reflect +/− 1 SEM. *** p < 0.001.

J.-H. Poh, M.W.L. Chee NeuroImage 153 (2017) 131–138

133



rigid body transformation. Trilinear and sinc interpolation implemen-
ted in SPM2 (Wellcome Department of Cognitive Neurology, London,
UK) were then used for slice-time correction. Functional data was co-
registered to cortical surface of individual T1 scans (Fischl et al., 1999)
using FreeSurfer (http://surfer.nmr.mgh.harvard.edu), and the co-
registered images were transformed into MNI152 space, and were
smoothed with a 5mm FWHM smoothing kernel. Details of this
processing pipeline can be obtained from Yeo et al. (2011).

fMRI analysis

Data from 3 participants were excluded due to excessive movement
during the fMRI session ( > 1.5mm displacement in multiple runs),
resulting in a final sample consisting of 45 participants (N=24 for RW
(12 Female); N=21 for TSD (11 Female)) between the ages of 19 and 30
(RW: M=23.8, SD=2.9; TSD: M=22.2, SD=2.2). Motion parameters of
the final sample did not differ between the RW and TSD group (t(43)
=0.53, p=.60).

Analyses were confined to scene-selective PPA, RSC and TOS
defined based on the independent functional localizer. All ROIs were
identified individually for each subject with a Scene > Face contrast. A
threshold of p < 0.05 FWE was used for the PPA and TOS, and
uncorrected p < 0.001 for the RSC (Fig. 3a). Different thresholds were
used to ensure reasonably sized ROIs and similar procedures have
been described in prior work examining scene selective regions
(Epstein and Higgins, 2007; Epstein et al., 2007). While the RSC is
selective for scene processing, it tends to be more strongly activated
when navigation is required (Vann et al., 2009). As participants in our
study were only required to make indoor/outdoor judgments, RSC
activation was relatively weak and a more lenient threshold was
therefore used. Boundaries for each ROI were defined based on the
scene selective ROIs derived in Julian et al. (2012). As three subjects
(all three participants from RW group) did not show reliable bilateral

activations within RSC clusters, they were excluded from analyses
involving the RSC.

We specified the GLM within SPM8 (Wellcome Department of
Cognitive Neurology, London, UK). All trials were modeled with a
separate regressor, resulting in a design matrix with 320 regressors of
interest (160 images * 2 presentations). All regressors were created by
convolving relevant events with a canonical HRF. Additionally, we
included 8 covariates of no interest (error and missed trials from the
baseline task, and 6 motion parameters), together with dummy
variables, which were included to account for differences across runs.

For each participant, a vector of t-values was created for each ROI,
based on the pattern of BOLD activation related to each event.

A significance level of p < 0.05 was applied for all statistical testing,
and when comparisons were performed across all 3 ROIs, a corrected
threshold of p < 0.017 was used to account for multiple comparisons.

To replicate findings from prior work (Yoo et al., 2007), we
performed a whole-brain level analysis comparing activation in RW
and TSD across i) all encoding trials, and ii) trials with subsequently
remembered images. For this analysis, the statistical threshold used
was similar to that adopted in the original study (uncorrected p <
0.001, k=15).

Category level Information representation

Cross-correlation was used to determine if the selected ROIs
contained information discriminating different scene categories
(Haxby et al., 2001). A ROI containing information discriminating scene
categories was one that showed higher within- than between- category
correlations.

Pairwise Pearson's correlations were computed for the activation
patterns elicited on every trial. Within-category correlation was
determined by averaging the correlation values for all pairs belonging
to the same category (i.e. corr(Indoor, Indoor) & corr(Outdoor,

Fig. 3. Activation magnitude in the three ROIs for the first and second presentations of subsequently remembered and forgotten items. On the first presentation of pictures, the RW
group showed significantly greater activation for subsequently remembered items in the PPA and TOS. In the TSD group, this difference (Dm effect) was only evident in the PPA. Error
bars depict +/−1 SEM. ** p < 0.01; *** p < 0.001.
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Outdoor)). Between-category correlation was derived by averaging the
correlation values for all pairs belonging to different categories (i.e.
corr(Indoor, Outdoor)).

A one-sample t-test was performed on the difference in within- and
between- category correlation (i.e. corrWithin–corrBetween); values sig-
nificantly greater than 0 indicate that the ROI contained information
allowing distinction of the 2 categories.

To reduce the likelihood that a significant difference was driven by
task specific demands (different button presses for indoor and out-
door), a similar comparison was performed for the subcategories
(Indoor: Living Room & Restaurant; Outdoor: City & Forest).

Subsequent memory (Dm) effects in fMRI signal amplitude

BOLD signal amplitude predicts subsequent memory (Brewer,
1998; Wagner, 1998). Corresponding to the expectation that higher
signal amplitude within the ROI speaks to greater processing of the
presented stimulus, we expected greater BOLD signal amplitude for
subsequently remembered items than forgotten items.

Signal amplitude for each trial was computed by averaging the beta
estimates across all voxels within an ROI. Each trial was then separated
based on subsequent memory, and the difference in signal amplitude
between subsequently remembered and forgotten items was examined
with a 2x2×2 mixed-ANOVA. State was the between-subject factor;
Presentation and Subsequent memory were within-subject factors.

Stability in neural activation: within-item pattern similarity

Pattern similarity (PS) is a measure of distance in state space, with
greater pattern similarity reflecting shorter distance between states
(Davis and Poldrack, 2013; Xue et al., 2010). Within-item pattern
similarity was calculated as the pairwise Pearson's correlation of the
vectors for each item across presentations as follows:

Within item PS i corr A A− ( ) = ( , ),i i1 2 (1)

where Ai1 corresponds to activation pattern elicited by the initial
presentation of the ith item and Ai2 corresponds to activation pattern
elicited by the second presentation of that item. This was separately
averaged for subsequently remembered (hits) and forgotten items
(misses) and across groups.

Item-Specific distinctiveness within the PPA

To examine the distinctiveness of activation patterns for remem-
bered items, we contrasted within-item pattern similarity to between-
item (category) similarity.

Item-specific distinctiveness was computed by subtracting the
between-item similarity from the within-item PS. If activation patterns
elicited across repetition of a stimulus were more similar to each other
than activation patterns elicited by other items of the same category,
this would suggest reinstatement of item-specific activation (Xue et al.,
2010). While distinctiveness is related to within-item PS, the two
measures are at least partially dissociable. For example, if attention is
consistently directed to processing of gist information, high within-
item PS and high between-item PS will co-exist, resulting in low
distinctiveness. Between-item PS can be represented as follows:

∑Between item PS corr K− = (A , A ) / ,
j

K

=1
i1 j

(2)

where Aj corresponds to the initial activation pattern for each item j in
the set K, comprising of items in the same category as item i. Item-
specific distinctiveness was thus defined as:

Distinctiveness Within item PS Between item PS= ( − )–( − ) (3)

Lower fidelity of encoding would give rise to less item-specific

reinstatement of activation patterns, resulting in lower item-specific
distinctiveness (i.e. lesser self-similarity and greater category similar-
ity). Statistical analyses were performed on Fisher's z-transformed
correlation values.

Results

Scene encoding

Performance of indoor/outdoor judgments during incidental en-
coding was evaluated using accuracy and RT. The RW group showed
better accuracy than the TSD group (t(43)=5.70, p < 0.001, d=1.70;
RW: M=98.2%, SD=1.3; TSD: M=93.3%, SD=4.1), and also showed
marginally faster response time (t(43)=−2.00, p=0.051, d=−0.6; RW:
M=889 ms, SD=127 ms; TSD: M=967 ms, SD=134 ms).

Recognition memory

Recognition of old items (A’) was significantly above chance in both
RW (t(23)=12.49, p < 0.001, d=5.21) and TSD groups (t(20)=3.77,
p=0.001, d=1.69). Only items that were correctly responded to during
incidental encoding were eligible for the subsequent evaluation of
recognition performance. This was done to reduce the possibility that
encoding of test items were affected by momentary lapses in attention.
Despite this adjustment, picture recognition was still significantly
poorer following TSD (t(43)=4.85, p < 0.001, d=1.45; Fig. 2B). There
was no significant difference in RT across groups and trial types during
recognition (Supp Table 1).

Reduced task related activation in hippocampus following sleep
deprivation

Before examining neural representations within neocortical ROIs of
interest, we first determined if we could replicate the prior finding of
reduced hippocampal activation following TSD (Yoo et al., 2007). The
TSD group showed lower task-related activation of the right hippo-
campus (Peak coord: 20, −28, −4; t=4.90; Supp Fig. 1) across all
encoding trials. In addition to the hippocampus, fronto-parietal and
higher visual areas were also affected by sleep deprivation, exhibiting
lower task-related activation (Supp Table 2). This result also held when
only remembered trials were analyzed.

Information representation in PPA, RSC & TOS

To determine if the ROIs contained information discriminating
different scene categories, we utilized cross-correlation to show that a
ROI containing information discriminating scene categories exhibited
higher within- than between- category correlations (Haxby et al.,
2001). Activation patterns within the three ROIs carried sufficient
information to facilitate the discrimination of different scene cate-
gories. This was evidenced by significantly higher within-category
compared to between-category correlations in all three ROIs in both
RW (PPA: t(23)=5.98, p < 0.001, d=2.45; RSC: t(20)=3.76, p=0.012,
d=1.68; TOS: t(23)=4.73, p < 0.001, d=1.97) and in TSD (PPA: t(20)
=5.43, p < 0.001, d=2.43; RSC: t(20)=2.92, p=0.008, d=1.31; TOS:
t(20)=3.18, p=0.005, d=1.42; Supp Fig. 2). This finding held up in the
PPA and TOS for within and between sub-category correlations
involving comparisons between living room and restaurant pictures,
as well as between city and forest pictures (Supp Fig. 2). The latter
finding is important because it indicates that the category information
within the ROIs was unlikely to be a result of task differences related to
the identification indoor and outdoor scenes (as opposed to stimulus
driven differences).
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Signal amplitude in the PPA was greater for subsequently
Remembered than Forgotten items

We compared signal amplitudes for subsequently remembered and
forgotten items and found a significant subsequent memory or Dm
effect in favor of remembered items in the PPA (F(1,43)=7.70,
p=0.008, ηp

2=0.152). This Dm effect was present only upon the initial
presentation of images and not following their subsequent presentation
as evidenced by a significant interaction of presentation and subse-
quent memory (F(1,43)=9.74, p=0.003, ηp

2=0.185).
In the PPA, the Dm effect was present in both RW (Pre1: t(23)

=3.84, p=0.001, d=0.96; Pre2: t(23)=0.11, p=0.917, d=0.02) and TSD
groups (Pre1: t(20)=2.63, p=0.016, d=0.58; Pre2: t(20)=−1.26,
p=0.221, d=−0.28) (Fig. 3). In TOS, the Dm effect was significant in
RW (t(23)=4.45, p < 0.001, d=0.94) but not TSD (t(20)=0.99, p=.336,
d=0.22). In the RSC, Dm effect trended towards significance in RW
(t(20)=2.40, p=0.026, d=0.53) but was absent in TSD (t(20)=1.03,
p=0.314, d=0.23). Higher PPA signal, but not TOS or RSC signal for
remembered pictures across states, is consistent with its role in
encoding environmental scenes (Epstein et al., 1999).

Pattern similarity and subsequent memory

In well-rested (RW) participants, pattern similarity in the PPA for
remembered items was significantly higher than for forgotten items
(t(23)=3.38, p=0.003, d=0.69) suggesting that PS in this region was
informative about subsequent memory. Pattern similarity was irrele-
vant to subsequent memory of the scene images in the other two ROI.
This was true of both states.

TSD was accompanied by significant lowering of PS in the PPA
(F(1,43)=16.66, p < 0.001, ηp

2=0.28), pointing to less stable neural
representations following sleep deprivation. Lowered PS in the TSD
state was similar for remembered and forgotten items (t(20)=−1.37,
p=0.185, d=−0.32; Fig. 4).

Quality of encoded information: distinctiveness of Item
representation

Finally, to examine the quality of encoded information, we exam-
ined item-specific distinctiveness of neural representations. We con-
fined this analysis to the PPA as it showed the greatest sensitivity to
differences in subsequent memory, indexed by both univariate Dm and
within-item PS. The analysis was confined to subsequently remem-
bered items to reduce uncertainty regarding what might be depicted in

forgotten or non-encoded items. The RW group showed significantly
greater item-specific distinctiveness than the TSD group (t(43)=2.92,
p=0.006, d=0.87; Fig. 5).

Discussion

Sleep deprivation prior to learning can affect memory formation
through its effect on the hippocampus (Yoo et al., 2007). An alternative
mechanism demonstrated here is deficient neural representation with-
in neocortical regions that feed into the hippocampus. Well-rested
participants showed neural representations within the PPA that were
stable across picture repetition, with higher pattern similarity for items
that were subsequently remembered relative to those that were
forgotten. Sleep deprivation impaired picture recognition and lowered
pattern similarity to a level below that of forgotten items in the rested
group. Finally, pattern information associated with remembered items
was less distinct following sleep deprivation.

Activation in cortical areas responsible for mediating and respond-
ing to selective attention is reduced following sleep deprivation, likely
as a result of cortical columns in these regions spontaneously and
stochastically entering a ‘down state’ (Vyazovskiy et al., 2011).
Particularly relevant to the current work, this lowered neural activation
is accompanied by increased variability of behavioral responses.

Pattern similarity is thought to reflect consistency in feature
processing and may benefit subsequent memory through the provision
of stable inputs to the hippocampus (Xue et al., 2013). This is
supported by the observation that greater pattern similarity in the
well-rested group was associated with superior subsequent memory.
While it is unclear why pattern similarity did not differ between
subsequently remembered and forgotten items in the TSD group, it is
likely that activation patterns, even for remembered items, were
already too unstable in TSD to provide any substantial mnemonic
benefits.

The present results concerning reduced pattern similarity in sleep
deprived persons complement prior work showing that sleep depriva-
tion reduces perceptual processing capacity (Kong et al., 2011), and
impairs selective attention (Kong et al., 2012; Lim et al., 2010; Tomasi
et al., 2009). In a nutshell, reduced processing of stimulus features
during sleep deprivation results in less stable input into the hippo-
campus from the PPA, contributing to weaker encoding, resulting in
poorer recognition memory.

In support of the account that sleep-deprivation compromises the
‘quality’ of stimulus encoding even for subsequently remembered
items, the neural distinctiveness of remembered items within the

Fig. 4. Pattern similarity for subsequently remembered items was greater in the PPA for the RW group but not the TSD group. No difference in pattern similarity between subsequently
remembered and forgotten item was observed in the RSC and TOS. Error bars indicate +/−1 SEM. ** p < 0.01.
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PPA was found to be reduced under sleep deprivation.
Distinctiveness in activation patterns has been used to indicate

reinstatement of item-specific activation patterns (Xue et al., 2010). In
the present work, greater distinctiveness refers to being able to
distinguish the neural representation of a specific exemplar from a
visual category from other exemplars within the same category. This
was evaluated through the comparison of within-item similarity (PS)
and between-item similarity. Two potential mechanisms could account
for the reduction in distinctiveness following sleep deprivation.

Decline in visual processing following sleep deprivation may be a
result of reduced cholinergic drive and lowered arousal (Chuah and
Chee, 2008). Conversely, higher cholinergic drive might increase
perceptual selectivity in visual processing regions by increasing the
signal to noise ratio of sensory neural responses. In turn, this may give
rise to a more distinct visual percept and more robust encoding (Furey
et al., 2000).

An alternative explanation for how lower distinctiveness relates to
poorer memory relates to the redundancy of information capture at the
time of encoding. In our study, participants performed indoor/outdoor
judgment of scene images. This only required attending to category
information and not exemplar information. When participants were
well rested, they showed higher distinctiveness for remembered items
than sleep-deprived participants, suggesting that despite being task
irrelevant, rested participants encoded additional exemplar informa-
tion, giving rise to more distinctive representations. In contrast, the
reduced distinctiveness displayed in TSD participants, points to
reduced processing of exemplar information. This resulted in repre-
sentations that bore greater similarity to exemplars from the same
category. Such degraded memory representations might have been
sufficient for supporting successful recognition of some scene images
but with less feature redundancy that could be referenced for confident
recognition, resulting in overall poorermemory.

Computational models of memory formation have suggested that
the generation of distinctive memory traces is a function of hippo-
campal pattern separation mechanisms (McClelland et al., 1995;
O'Reilly and Norman, 2002). As such, reduced representational
distinctiveness could potentially be driven by degraded input to the
hippocampus or reduced hippocampal function. Indeed, prior findings
have shown that hippocampal lesions reduce one's ability to distinguish
similar memoranda (Brock Kirwan et al., 2012). High-resolution fMRI
studies, have also demonstrated the role of hippocampal subregions in
producing distinctive neural representations (Lacy et al., 2011).
Unfortunately the spatial resolution of our scans made reliable inquiry
of hippocampal pattern representations unfeasible, limiting possible
examination of hippocampal-neocortical interactions during encoding.

Conclusion

In sum, degraded representation of visual sensory information in
the PPA contributes to poorer memory encoding in sleep deprived
young adults and subsequently reduces recognition performance.
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