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Significant inter-individual differences in vigilance decline following sleep deprivation exist. We characterized
functional connectivity in 68 healthy young adult participants in rested wakefulness and following a night of
total sleep deprivation. After whole brain signal regression, functionally connected cortical networks during
thewell-rested state exhibited reduced correlation following sleep deprivation, suggesting that highly integrated
brain regions become less integrated during sleep deprivation. In contrast, anti-correlations in the well-rested
state became less so following sleep deprivation, suggesting that highly segregated networks become less segre-
gated during sleep deprivation. Subjects more resilient to vigilance decline following sleep deprivation showed
stronger anti-correlations among several networks. The weaker anti-correlations overlapped with connectivity
alterations following sleep deprivation. Resilient individuals thus evidence clearer separation of highly segregat-
ed cortical networks in the well-rested state. In contrast to corticocortical connectivity, subcortical–cortical con-
nectivitywas comparable across resilient and vulnerable groups despite prominent state-related changes in both
groups. Because sleep deprivation results in a significant elevation of whole brain signal amplitude, the aforesaid
signal changes and group contrasts may be masked in analyses omitting their regression, suggesting possible
value in regressing whole brain signal in certain experimental contexts.

© 2015 Elsevier Inc. All rights reserved.

Introduction

Inter-individual differences in performance decline following sleep
deprivation are trait-like (Lim et al., 2007; Rupp et al., 2012; Van
Dongen et al., 2004). Being able to identify vulnerable persons prior to
their undergoing sleep deprivation could prove invaluable in a world
that has become increasingly dependent on 24/7 service delivery. Drift
diffusion in psychomotor vigilance response times (Patanaik et al.,
2014), decreased heart rate variability (Chua et al., 2012) and lower
task-related fMRI activation (Caldwell et al., 2005; Chee et al., 2006;
Mu et al., 2005) have been suggested as candidate predictive markers
but are uninformative regarding why they predict neurobehavioral
vulnerability.

Task-based fMRI shows how brain regions are differentially affected
by sleep deprivation (Bell-McGinty et al., 2004; Drummond et al., 2005;
Tomasi et al., 2009). Reduced fronto-parietal activation following a

night of total sleep deprivation correlated with various types of atten-
tional decline (Chee and Tan, 2010; Chuah and Chee, 2008). However,
few task-based fMRI studies have examined the neural correlates of
sleep deprivation vulnerability in rested participants. In these studies,
lower frontoparietal activation in the well-rested state was associated
with greater vulnerability to cognitive performance decline (Caldwell
et al., 2005; Chee et al., 2006; Mu et al., 2005), suggesting lowered cog-
nitive reserve. However the ‘predictive’ aspect of one of the working
memory experiments (Chee et al., 2006)was not subsequently replicat-
ed (Lim et al., 2007). Additionally, task-based fMRI inferences are
typically restricted to brain regions recruited by the task. Other areas
in the same individuals may show sleep deprivation effects when a dif-
ferent task is used (Chuah andChee, 2008). As such, resting-state fMRI is
attractive since connectivity of multiple networks can be assessed con-
currently (Biswal et al., 1995; Smith et al., 2009; Buckner et al., 2013).

Functional connectivity studies of sleep-deprived persons have
mostly focused on the Default network and its anti-correlations with
the Attention and Control networks1 (De Havas et al., 2012; Sämann
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et al., 2010). There were also studies that evaluated connectivity alter-
ations within the dorsal prefrontal cortex (Bosch et al., 2013) and
thalamocortical connections (Picchioni et al., 2014; Shao et al., 2013).
Of these, only one (De Havas et al., 2012) attempted to uncover associ-
ations between connectivity disruption and behavior, but did not find
significant association.

The present study uses a recently published resting-state network
parcellation (Yeo et al., 2011) to characterize connectivity changes asso-
ciated with sleep deprivation. First, we evaluated the effects of sleep
deprivation on connectivity of hitherto unstudied networks at a high
resolution. Second, we examined how functional connectivity in the
rested state might predict vulnerability to performance decline in the
psychomotor vigilance task (PVT; Dinges and Powell, 1985). The PVT
is a highly reproducible assay for vigilance that has been validated in
multiple settings (Basner et al., 2011; Dorrian et al., 2005) and utilized
by many military and transport authorities to determine fitness for
duty around the world (Russo et al., 2005). Finally, we evaluated differ-
ences in state-related network changes in participants that are more
vulnerable and participants that are more resilient to sleep deprivation,
expecting that these would resemble features differentiating partici-
pants in the well-rested state. We performed our analyses with and
without regressing whole brain signal in order to test recent observa-
tions that increased amplitude of this signal is informative about
decreased vigilance (Thompson et al., 2013; Wong et al., 2013).

Methods

Participants

82 participants provided informed consent in compliance with a
protocol approved by the National University of Singapore Institutional
Review Board. Participants were selected from respondents of a web-
based questionnaire who (1) were right-handed, (2) had regular
sleeping habits, (3) slept no less than an average of 6.5 h/night,
(4) were not on any long-termmedications, (5) had neither symptoms
nor history of sleep disorders, (6) had no history of psychiatric or neu-
rologic disorders, (7) drank less than 3 caffeinated drinks per day and
(8) were not of an extreme chronotype as assessed by the Horne–
Östberg Morningness–Eveningness questionnaire (Horne and Östberg,
1976), i.e., selected subjects had scores between 35 and 65. 14 partici-
pants were subsequently excluded due to high motion (see motion
scrubbing), incomplete data or outlier analysis.

The final set of 68 participants (mean age of 22 ± 2.5 years, 32 fe-
males) consisted of three groups. Group A and Group B consisted of
19 and 22 subjects scanned in conjunction with two previously pub-
lished studies (Kong et al., 2014; Ong et al., 2013). Group C consisted
of 27 subjects collected solely for this study. While most of the analyses
combined all three groups of participants to increase power, steps were
taken to ensure that results were not driven by any one group.

Study procedure

Participants made three visits to the laboratory. On the first visit,
they were briefed on the study protocol. Tomonitor their sleep pattern,
each personwas given awrist actiwatch (Actiwatch, Philips Respironics,
USA) that had to be worn until they completed the experiment. Only
subjects with good sleep habit (slept for more than 6.5 h per night,
slept no later than 1:00 am and woke up no later than 9:00 am) were
invited to participate in the subsequent sessions.

The second and third visits were rested wakefulness (RW) or sleep
deprivation (SD) sessions. During the sleep deprivation session, partic-
ipants arrived at 7:00 pm and stayed awake the entire night. They com-
pleted the 9-point Karolinska Sleepiness Scale (KSS) (Åkerstedt and
Gillberg, 1990) and the 10-minute psychomotor vigilance task (PVT)
every hour (Dinges et al., 1997) to measure their alertness. All three
groups were scanned at 6:00 am.

In the PVT, subjects had to fixate on a screen and place their domi-
nant index finger on the button/key tominimize delayed response. Sub-
jects were to press the button/key as soon as a number appeared. A
warning was triggered if subjects did not respond for a long period of
time. Across all three groups of subjects, the temporal distribution of
the stimulus was a uniform distribution from 2 to 10 s.

During the rested wakefulness session, participants arrived at
9:30 pm and were given a 9 h sleep opportunity in a dark, quiet,
air-conditioned room. They were awakened at 7:00 am to wash up
and have a light snack. Groups A and B performed the PVT at
8:00 am and were scanned after its completion. Subjects from
Group C performed a 10-minute PVT at 7:30 am and were scanned
at 8:00 am.

There were three main differences in the PVT procedure among the
three groups of subjects. First, Group A utilized the PVT-192 (Ambulatory
Monitoring Inc., Ardsley, NY), a portable hand-held device with a LED
display, while Groups B and C utilized computer-based testing
(i.e., keyboard and 20.8″× 17.7″monitor). This resulted in systematically
slower RT in Groups B and C compared with Group A. For computer-
based testing, subjects were required to maintain an approximate dis-
tance of 60 cm from the screen keeping their eyes level with thefixation
dot. Secondly, the PVT in Group C during the restedwakefulness session
was conducted at 7.30 am instead of 8 am. Lastly, all subjects performed
a PVT every hour from 8:00 pm until 5:00 am (inclusive) during the
sleep deprivation session. Group C performed an additional PVT at
5:45 am.

The restedwakefulness scan timewas chosen to be representative of
a typical work day start time, while the sleep deprivation scan timewas
chosenwhen vigilance hits a nadir following a night of sleepdeprivation
(Doran et al., 2001). The rested wakefulness and sleep deprivation ses-
sions were separated by a minimum of one week and the order of test
sessions was counterbalanced across participants.

While there were variations in behavioral experiments across the
three groups (Groups B and C performed additional behavioral experi-
ments, whose details can be found in Kong et al., 2014; Ong et al.,
2013), the scan times in the well-rested and sleep-deprived states
were separated by less than an hour across the three groups. Guidelines
for allowable activity through the study night were common across the
groups. In particular main meals were taken at the same time across
participants. All the participants in the rested wakefulness session
were observed overnight in the sleep lab so that their wake time was
regularized across participants in the three groups.

MRI acquisition

24 min (4 runs × 6 min) and 12 min (2 runs × 6 min) resting-state
fMRI data were collected during the rested wakefulness and sleep dep-
rivation sessions respectively. Three participants from Group A were
scanned for shorter duration: two participants with 1 run of 8 min
and one participant with 2 runs of 6 min for both sessions. Participants
were instructed to keep their eyes open, relax and stay still. They were
monitored through an eye tracker system and given a pre-recorded
wake-up call if their eyes were closed for more than 10 s to prevent
them from falling asleep. Wake-up calls were automatically recorded
and utilized for further control analyses.

Structural and functional imageswere acquired on a 3-Tesla TimTrio
system (Siemens, Erlangen, Germany) using a 12-channel head coil.
Functional images were collected using a gradient echo-planar imaging
sequence (TR=2000ms, TE= 30ms, FA= 90°, FOV= 192× 192mm
andmatrix size=64× 64). For each functional volume, 36 oblique axial
slices (3 mm thick with no gap between slices) parallel to the AC–PC
line were acquired with interleaved acquisition. High-resolution struc-
tural images were acquired using MPRAGE sequence (TR = 2300 ms,
TI = 900ms, TE= 2.98ms, FA= 9°, BW= 240 Hz/pixel, voxel dimen-
sion: 1.0 × 1.0 × 1.0 mm, FOV= 256 × 240 mm).
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MRI preprocessing

fMRI processing steps included 1) discarding the first four frames
of each run, 2) correcting for slice acquisition-dependent time shifts
in each volume with SPM (Wellcome Department of Cognitive Neu-
rology, London, UK), and 3) correcting for head motion using rigid
body translation and rotation parameters (FSL; Jenkinson et al.,
2002; Smith et al., 2004).

Individual participants' structural scanswere reconstructed into sur-
face representations using FreeSurfer 4.5.0 (http://surfer.nmr.mgh.
harvard.edu; Fischl, 2012). Functional data were registered to structural
images using FreeSurfer's FsFast package (http://surfer.nmr.mgh.
harvard.edu/fswiki/FsFast; Greve and Fischl, 2009). The structural pre-
processing and structural–functional data alignment steps have been
described in Yeo et al. (2011). Quality of image registration and cortical
surface extraction was visually assessed for each subject.

Standard functional connectivity preprocessingwas then performed
on the fMRI data (Fox et al., 2005; Van Dijk et al., 2010; Vincent et al.,
2006). Linear trends over each run were removed and a low-pass tem-
poral filter retained frequencies below 0.08 Hz. Spurious variance was
removed using linear regression with terms for head motion, whole
brain signal, ventricle signal, white matter signal and their derivatives.
The whole brain, white matter and ventricular masks were defined
based on FreeSurfer segmentation of individual subjects' anatomical
scan and transformed into the native T2* space of individual subjects.
The white matter segmentation was eroded by one voxel. Erosion was
not performed for the ventricular segmentation because this would re-
sult in some subjects not having any ventricular voxels.

Functional data were projected onto the FreeSurfer surface space
(2 mm mesh), smoothed on the surface using a 6 mm full-width half-
maximum kernel, and then downsampled to a 4 mmmesh.

In addition, structural data of individual subjectswerenonlinearly reg-
istered to MNI152 space using FreeSurfer (Fischl et al., 2002, 2004; Han
and Fischl, 2007). More details can be found in Buckner et al. (2011). Vi-
sual inspection of the structural data suggested that the deformationwere
adequate for all subjects. Functional data of individual subjects were then
projected to MNI152 space, downsampled to 2 mm voxels and then
smoothed with a 6 mm full-width half maximum kernel.

Motion scrubbing

Head motion affects measures of functional connectivity (Power
et al., 2012; Satterthwaite et al., 2012; Van Dijk et al., 2012; Yan et al.,
2013; Zeng et al., 2014) and can be a confounding factor when compar-
ing groups with differential head motion. To reduce the effects of mo-
tion on functional connectivity, motion scrubbing (Power et al., 2012)
was applied to the preprocessed fMRI data. Briefly, this technique
included selective removal of volumes (time points) based on twomea-
sures, framewise displacement (FD) and variance of temporal derivative
of time courses over voxels (DVARS). Here, only volumes with
FD b 0.2 mm and DVARS b 5% were included. One volume before and
two volumes after each volume that failed the criteria were also
discarded. A functional runwas excluded if less than 50% of the volumes
remained after motion scrubbing. Based on these criteria, 2 subjects
were excluded due to high motion during sleep-deprivation. There
were 164.9 ± 17.4 and 158.0 ± 21.4 volumes per run per subject after
motion scrubbing in the rested and sleep-deprived states respectively.
We note that there were more runs during the rested state than during
the sleep-deprived state, so that there were an overall average of
633.0 ± 102.7 and 302.1 ± 52.8 volumes per subject after motion
scrubbing in the rested and sleep-deprived states respectively.

Functional connectivity

Functional connectivity was evaluated on motion scrubbed
preprocessed resting-state fMRI data in fsaverage surface space (for

cortical regions) andMNI152 volumetric space (for subcortical regions).
Cortical regions were represented by 114 regions of interest (ROIs) ex-
tracted from a 17-network cortical parcellation estimated in 1000
young adults (Yeo et al., 2011; also see Baker et al., 2014; Betzel et al.,
2014). Subcortical regions were represented by 8 ROIs corresponding
to the left and right hemispherical thalamus, striatum, hippocampus,
and amygdala extracted from the FreeSurfer segmentation of the FSL
MNI152 template. This resulted in a total of 122 ROIs. For each function-
al run, time courses were averaged across vertices (for cortical regions)
or voxels (for subcortical regions) within each ROI. The mean time
course of each ROI was correlated to the mean time courses of all
other ROIs, resulting in a 122 × 122 correlation matrix, with 7381
(=122 × 121 / 2) unique Pearson's correlation values. Fisher r-to-z
transformwas applied to the correlation values to encourage normality
(Van Dijk et al., 2010). For each rested wakefulness and sleep depriva-
tion session, the resulting z-transformed correlation matrices were av-
eraged across all runs of each subject.

Finally, two sets of nuisance factorswere jointly regressed fromeach
entry of the correlation matrices. To reduce possible inter-group differ-
ences, the first set of regressors consisted of three binary vectors indi-
cating Group A, Group B, or Group C membership. The second set of
regressors consisted of averagemotion of each individual subject to fur-
ther reduce residual motion-related effects (Van Dijk et al., 2012).

Effects of sleep deprivation on functional connectivity

For each entry in the (z-transformed and regressed) correlationma-
trix, a within-subject (paired) t-test was performed to test for stronger
correlations during thewell-rested state than during the sleep-deprived
state. Network-based statistic was used to correct for multiple compar-
isons (Zalesky et al., 2010). The network-based statistic is the graph an-
alog of cluster-based thresholding and controls the family-wise error
rate (in the weak sense). Like cluster-based thresholding (Nichols and
Holmes, 2002), the network-based statistic requires thresholding of
the t-statistics generated by the initial univariate t-tests. To ensure our
results were robust to the choice of this initial threshold, we tested
three initial thresholds corresponding to p = 0.05, p = 0.01, and p =
0.005 uncorrected. The analysis was repeated to test for weaker correla-
tions during the rested wakefulness session than during the sleep
deprivation session. The separate testing of stronger and weaker corre-
lations followed previous network-based statistic convention (Zalesky
et al., 2010).

Categorization of subjects into resilient and vulnerable groups

The 68 subjects were divided into two groups based on the number
of psychomotor vigilance task (PVT) lapses in the sleep deprivation ses-
sion. The number of lapses in a single PVT run was defined as the num-
ber of trials with reaction time (RT) slower than twice the subject's
mean RT during the rested wakefulness PVT run. While PVT lapses cor-
relate stronglywith reaction time, PVT lapses are thought to reflect both
slower mental processing as well as state instabilities (micro-sleeps)
during sleep deprivation (Doran et al., 2001).

The number of sleep deprivation lapses in Group C subjects was ob-
tained by averaging across the last three PVT runs (4:00 am, 5:00 am
and 5:45 am). For Group B and Group C subjects, the last PVT run was
at 5:00 am. Consequently, the number of sleep deprivation lapses was
averaged across the last two runs (4:00 am and 5:00 am).

The 68 subjects were categorized as eithermore vulnerable (VUL) or
more resilient (RES) based on a median split of the average number of
sleep deprivation lapses. This categorization was performed separately
for each of the three groups of subjects because of systematic RT differ-
ences across groups (see results) due to differences in PVT procedures
(see the Study procedure section). The categorization resulted in a
total of 34 resilient and 34 vulnerable subjects.
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Functional connectivity differences between vulnerable and resilient
subjects

The 122 × 122 correlation matrices of resilient and vulnerable sub-
jects during rested wakefulness were compared. We tested whether
the more resilient subjects had stronger (or weaker) correlations than
themore vulnerable subjects using network-based statistics. The proce-
dure is the same as the analysis of connectivity changes due to sleep
deprivation, except the initial univariate tests utilized unpaired (instead
of paired) t-tests.

We also compared connectivity changes after sleep deprivation be-
tween resilient and vulnerable subjects. Network-based statistics were
again utilized to correct for multiple comparisons.

Prediction of sleep deprivation vulnerability with functional connectivity
during the well-rested state

A leave-one-out cross-validation procedure was employed to test if
functional connectivity during the rested state can predict whether a
subject is more vulnerable or more resilient to cognitive decline during
sleep deprivation. More specifically, a linear support vector machine
(SVM) classifier was trained with the 122 × 122 functional connectivity
matrix of 67 subjects and tested on the leave-one-out subject. The
leave-one-out procedure was repeated for each of the 68 subjects. A
permutation test (500 permutations) was performed to determine
whether the resulting classification accuracy was better than chance.

Whole brain signal regression

Whole brain signal regression can introduce negative correlations
between brain regions (Fox et al., 2009; Murphy et al., 2009), resulting
in ongoing debate about the appropriateness of whole brain signal re-
gression in fcMRI preprocessing. We hold the position that whether to
regress whole brain signal (just like regressing the age of subjects)
varies with context. Given that the whole brain fMRI signal has been
correlated with vigilance decline and accompanying increase in EEG
delta activity (Wong et al., 2013), regressing the whole brain signal
might remove valuable information about sleep deprivation. To explore
this, we repeated previous analyses omitting whole brain signal regres-
sion. Critically, analyses with whole brain signal regression examines
the relationship of fMRI fluctuations relative to the whole brain signal
with sleep deprivation (and resilience to sleep deprivation). In contrast,
omitting this step evaluates total fMRI shift and fluctuation (whole brain
signal plus fluctuations relative to the whole brain signal). To foreshad-
ow the results, omittingwhole brain signal regression resulted inweak-
er differentiation of resilient and vulnerable subjects.

Controlling for confounding factors

There were several confounding factors when comparing functional
connectivity in the well-rested and sleep-deprived states. First, subjects
exhibited higher motion following sleep deprivation than during rested
wakefulness. Second, therewas twice asmuch data for the restedwake-
fulness session (24 min) compared with the sleep deprivation session
(12 min), which is a possible confounding factor (Giessing et al.,
2013). Third, subjects received more wake-up calls in the sleep-
deprived state, which might temporally redirect their attention to the
external environment.

Here a control analysis was performed that considered all three con-
founding factors. First, recall that subjects were given wake-up calls if
their eyes were closed for more than 10 s. Therefore we removed 10 s
of data before and after the wake-up call (20 s in total). A functional
run was excluded if fewer than 50% of the volumes remained after the
removal, resulting in 6 subjects being excluded. Four subjects were
also excluded because wake-up call data was incomplete, so we were
left with 58 subjects. Second, a subset of the rested wakefulness runs

was then selected to match the number of remaining sleep-deprived
runs based on the number of volumes remained after wake-up calls re-
moval. Rested wakefulness runs with similar number of volumes as
sleep deprived runs were chosen and then volumes in each run were
further discarded (randomly) such that both states had equal number
of volumes. Finally, a subset of subjects with comparable motion during
rested wakefulness and sleep deprivation states was isolated. The anal-
ysis of connectivity changes due to sleep deprivation was repeated
using this subset of subjects (N = 43).

To foreshadow the results, therewere no difference in the amount of
motion and the number of wake-up calls between the more resilient
and themore vulnerable subjects during thewell-rested state, so no ad-
ditional analyses were performed to control for these factors in the vul-
nerability analysis. However, we did explore various strategies in
categorizing resilient and vulnerable subjects. First, we investigated
whether categorizing resilient and vulnerable subjects within each
group and then combining the subjects was acceptable. The analysis
comparing resilient and vulnerable subjects during rested wakefulness
was repeated for each of the three groups separately. Second, we per-
formed a ternary (instead of a median) split within each group of sub-
jects. Third, we directly correlated functional connectivity during the
well-rested state with the number of lapses during sleep deprivation.

Finally, to ensure our results are robust to preprocessing strategies,
we also utilized CompCor (Behzadi et al., 2007; Chai et al., 2012) in
place of whole brain, white matter and ventricular regression. Briefly,
this involves regressing the top five principal components of ventricular
andwhitematter time courses instead of whole brain, whitematter and
ventricular signals. Both connectivity changes due to sleep deprivation
and sleep-deprivation vulnerability were investigated.

Comparison of different analyses

To compare the similarity between two analyses, let us suppose the
first analysis resulted in matrix A, while the second analysis resulted in
matrix B. For example, the first analysis might utilize whole brain signal
regression, while the second analysis might utilize CompCor. The simi-
larity between the two analyses was quantified by the correlation of
the entries of matrices A and B.

Results

PVT performance decreases during sleep deprivation

Table 1 summarizes PVT performance of subjects. The number of
PVT trials for each subject was 84± 9 and 83± 10 during rested wake-
fulness and sleep deprivation respectively. As a group, participants
showed the expected decline in psychomotor vigilance following sleep
deprivation as evidenced by slower response times (mean RT =
371.5 ms, 511.7 ms, 603.5 ms for Groups A, B and C respectively) as
compared to rested wakefulness (mean RT = 256.9 ms, 314.0 ms,
345.5 ms, p b 0.001). There were also an increased number of lapses
during sleep deprivation: 7 lapses during sleep deprivation versus 1
lapse during rested wakefulness.

There were systematic inter-group RT differences during rested
wakefulness (F(2, 65) = 32.8, p b 0.001) and sleep deprivation (F(2,
65)= 4.54, p b 0.05), leading us to categorize sleep deprivation vulner-
ability separately within each group of subjects.

Corticocortical connectivity during rested wakefulness and sleep
deprivation

Fig. 1a shows the 17-network parcellation of the right cerebral cor-
tex (Yeo et al., 2011). The 17 networks were divided into eight groups
(Default, Control, Limbic, Salience/Ventral Attention, Dorsal Attention,
Somatomotor, Visual and TempPar), which broadly correspond to
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major networks discussed in the literature. The 17 networks are
referred to as “Default A”, “Default B” and so on (Fig. 1a).

114 regions of interest (ROIs) in the cortical regions were derived
from the 17 networks. The pairwise functional connectivity (with
whole brain signal regression) among the 114 cortical ROIs during rest-
ed wakefulness and during sleep deprivation is shown in Figs. 1b and c
respectively.

Connectivity patterns among the cortical networks during rested
wakefulness and sleep-deprivation share some common features in
that high within-network and low between-network correlations can

be observed. We quantify connectivity differences between the two
states in the following sections.

Distributed brain-wide connectivity changes after sleep deprivation

Functional connectivity differences (with whole brain signal regres-
sion) among 122 cortical and subcortical ROIs between the well-rested
and sleep-deprived states were computed. Consistent with previous
work (De Havas et al., 2012; Sämann et al., 2010), we found both in-
creased and decreased connectivity within and across distributed
large-scale brain networks resulting from sleep deprivation. The state-
related changes in connectivity were significant across all three
network-based statistics thresholds (p b 0.0001 corrected). In the fol-
lowing sections, we first focus on cortical connectivity changes before
considering subcortical connectivity changes.

Corticocortical connectivity changes after sleep deprivation

Differences in functional connectivity (with whole brain signal re-
gression) among the 114 cortical ROIs between rested wakefulness
and sleep deprivation are shown in Fig. 2. Cool (hot) colors indicate de-
creased (increased) connectivity in thewell-rested state comparedwith
the sleep-deprived state.

Three previous results (De Havas et al., 2012; Sämann et al., 2010)
were replicated. First, stronger anti-correlations (cool colors) between
Default and Attention networks were observed during the rested state
relative to the sleep-deprived state, i.e., the negative correlations were
more negative during rested wakefulness. The stronger anti-correlations
were especially prominent betweenDefault networks (A and B) and Dor-
sal Attention networks (A and B): 171 out of 252 ROIs pairs with p b 0.05
corrected. Second, subjects exhibited stronger correlations (hot colors)
within Default network A during the well-rested state relative to the
sleep-deprived state: 28 out of 36 ROIs pairs with p b 0.05 corrected.
Third, there were stronger anti-correlations between Default networks
(A and B) and Salience/Ventral Attention A during wakefulness: 139 out
of 198 ROIs pairs with p b 0.05 corrected.

A previously unreported finding is stronger functional connectivity
(hot colors) between Dorsal Attention and Ventral Attention networks
during the rested state relative to the sleep-deprived state. The higher
correlations were especially prominent between Salience/Ventral

Table 1
Statistics of reaction times and lapses of subjects in all three groups in both thewell-rested
and sleep-deprived states.

Group A Group B Group C

Mean reaction time (in ms)
Rested wakefulness

Mean ± standard deviation 256.9 ± 29.7 314.0 ± 43.6 345.5 ± 34.6
Range (min–max) 208.6–315.2 265.0–425.9 287.1–444.9
More resilient subjects
Mean ± standard deviation 246.2 ± 32.6 306.6 ± 25.3 347.5 ± 37.4
Range (min–max) 208.6–315.2 271.8–355.9 307.7–444.9
More vulnerable subjects
Mean ± standard deviation 264.7 ± 26.3 322.9 ± 59.1 343.3 ± 32.7
Range (min–max) 233.2–303.4 265.0–425.9 287.1–389.7

Sleep deprivation
Mean ± standard deviation 371.5 ± 112.6 511.7 ± 337.9 603.5 ± 253.3
Range (min–max) 237.0–731.3 297.3–1406.1 321.2–1322.6
More resilient subjects
Mean ± standard deviation 290.8 ± 47.6 326.8 ± 18.2 439.5 ± 61.9
Range (min–max) 237.0–395.4 297.3–356.6 321.2–540.0
More vulnerable subjects
Mean ± standard deviation 430.2 ± 110.6 733.6 ± 407.0 780.2 ± 264.0
Range (min–max) 333.0–731.3 316.0–1406.1 423.2–1322.6

Number of lapses during sleep deprivation
Mean ± standard deviation 7.1 ± 5.2 5.7 ± 8.2 9.2 ± 8.2
Median 7.0 1.5 7.3
More resilient subjects
Mean ± standard deviation 2.2 ± 1.6 0.8 ± 0.6 3.0 ± 2.3
Range (min–max) 0–4.5 0–1.5 0–7.3
More vulnerable subjects
Mean ± standard deviation 10.6 ± 3.7 11.5 ± 9.3 15.9 ± 6.8
Range (min–max) 7.0–20.0 2.0–27.5 8.7–27.7

Fig. 1. Similar functional coupling among cortical regions during restedwakefulness and after sleepdeprivation. (a) 17-network cortical parcellation (Yeo et al., 2011). The 17networks are
divided into eight groups (Default, Control, Limbic, Salience/Ventral Attention, Dorsal Attention, Somatomotor, Visual and TempPar), roughly corresponding tomajor networks discussed
in the literature. 114 ROIs were derived from the 17 networks. Z-transformed pairwise functional connectivity among the 114 cortical ROIs during (b) rested wakefulness and during
(c) sleep deprivation. Hot (cool) colors represent positive (negative) correlation. Thickwhite lines separate the eight groups of networks, while thin white lines separate the 17 networks.
The networks within each of the eight groups are ordered in alphabetical order from bottom to top. For example, ROIs belonging to Default networks A, B, and C are arranged from bottom
to top (c). Within each network, left hemispherical ROIs are at the bottom while right hemispherical ROIs are at the top. Similar connectivity patterns are seen for both well-rested and
sleep-deprived states.
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Attention network A and Dorsal Attention networks (A and B): 136 out
of 154 pairs of ROIs with p b 0.05 corrected.

Subcortical–cortical connectivity changes after sleep deprivation

Functional connectivity between the 114 cortical ROIs and 8 subcor-
tical ROIs (with whole brain signal regression) during rested wakeful-
ness and sleep deprivation is shown in Fig. 3 (top two panels).

Differences in functional connectivity (with whole brain signal re-
gression) among subcortical and cortical ROIs between rested wakeful-
ness and sleep deprivation are shown in Fig. 3 (bottom panel).

During rested wakefulness, subjects exhibited (1) higher correla-
tions between the thalamus and Default networks A and C: 25 out of
30 ROI pairs with p b 0.05 corrected, (2) lower correlations between
the thalamus and Salience/Ventral Attention networks: 39 out of 48
ROI pairs with p b 0.05 corrected, and (3) weaker anti-correlations be-
tween thalamus and Dorsal Attention network A: 12 out of 12 ROIs
pairs with p b 0.05 corrected.

During rested wakefulness, subjects also exhibited (1) higher corre-
lations between hippocampus andDefault network A (14 out of 18 ROIs
pairs with p b 0.05 corrected) and (2) higher anti-correlations between
hippocampus and Salience/Ventral Attention A (15 out of 22 ROIs pairs
with p b 0.05 corrected).

Vulnerability to sleep deprivation can be predicted during rested
wakefulness

The more resilient and the more vulnerable subjects performed on
average 84 ± 9 and 83 ± 10 PVT trials respectively. This difference
was not significant (p = 0.79). Resilient participants averaged 2 lapses
in the sleep-deprived state compared to 13 for the vulnerable subjects.
The difference of 11 lapses between resilient and vulnerable subjects
constitutes 13% of the PVT trials, suggesting a significant difference in
vigilance decline between the two groups of subjects. There was no sig-
nificant difference in PVT reaction time between resilient and vulnera-
ble subjects during the well-rested state (p = 0.187 for Group A, p =
0.396 for Group B and p = 0.758 for Group C; Table 1).

Functional connectivity differences (with whole brain signal regres-
sion) among 122 cortical and subcortical ROIs between resilient and
vulnerable subjects during the well-rested state were computed. Resil-
ient subjects exhibited significantly lower connectivity compared to
vulnerable subjects (pb 0.005 corrected across all network-based statis-
tic thresholds).

Differences in functional connectivity among cortical ROIs between
resilient and vulnerable subjects during the well-rested state are shown
in Fig. 4a. Resilient subjects exhibited stronger anti-correlations (more
negative) between Default and Attention networks. Stronger anti-

Fig. 2. Corticocortical connectivity differences between restedwakefulness and sleep dep-
rivation. ROI arrangement follows Figs. 1b and c. Hot (cool) colors indicate stronger
(weaker) correlations during rested wakefulness (relative to sleep deprivation). Both
stronger and weaker correlations after sleep-deprivation were statistically significant
(p b 0.0001, corrected for multiple comparisons). Only ROI pairs with p b 0.05 corrected
using network-based statistic initial threshold of p b 0.01 are colored. One prominent dif-
ference is that during restedwakefulness, subjects exhibited stronger anti-correlations be-
tween Default networks (A and B) and Attention networks (Salience/Ventral Attention
network A, and Dorsal Attention networks A and B). Therewere also stronger correlations
during rested wakefulness within Default network A and between Dorsal Attention net-
works (A and B) and Salience/Ventral Attention network A. Networks that were signifi-
cantly affected by sleep deprivation are illustrated on the right.

Fig. 3. Effect of sleep deprivation on connectivity between subcortical and cortical regions. Connectivity between 8 subcortical ROIs and 114 cortical ROIs during restedwakefulness (top)
and sleep deprivation (middle), as well as connectivity changes between cortical and subcortical regions following sleep deprivation (bottom). Thalamus and striatum are represented in
rectangles of larger size to illustrate their larger volumes compared to hippocampus and amygdala. During rested wakefulness, subjects exhibited weaker correlations between thalamus
and Salience/Ventral Attention networks (cool colors; p b 0.0001, corrected for multiple comparisons) and weaker anti-correlations between thalamus and Dorsal Attention network A
(hot colors; p b 0.0001, corrected for multiple comparisons).
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correlationswere especially prominent betweenDefault networks (A and
B) andAttention networks (Dorsal AttentionA andB, Salience/Ventral At-
tention A): 112 out of 450 ROI pairs with p b 0.05 corrected. These were
more prominent with respect to the Salience/Ventral Attention A net-
work. Resilient persons also showed greater anti-correlation between
both Attention networks and Control network B (58 out of 275 ROI
pairs with p b 0.05 corrected) as well as between Default networks (A
and B) and Visual network B (80 out of 108 ROI pairs with p b 0.05
corrected).

There were no significant subcortical–cortical or between-
subcortical connectivity differences between resilient and vulnerable
subjects in the rested wakefulness state.

By training a SVM classifier on the functional connectivity data in
the well-rested state, we were able to correctly classify 41 of the 68
subjects as either more vulnerable or more resilient during sleep
deprivation. This corresponded to a classification accuracy of 60.3%
(p b 0.05).

Comparison of connectivity differences between resilient and vulnerable
subjects during rested wakefulness and across states

Comparison between Figs. 2 and 4a suggests that network differ-
ences between themore vulnerable and themore resilient subjects dur-
ing rested wakefulness shared features observed in network alterations
following sleep deprivation (r = 0.31, p b 0.05). Specifically, resilient
participants evidencedmore pronounced anti-correlations betweenDe-
fault networks (A and B) and Attention networks (Dorsal Attention A
and B, Salience/Ventral Attention A).

However, other aspects of connectivity that showed significant
state-changes (specifically connectivitywithinDefault A and connectiv-
ity between Dorsal and Ventral Attention networks) did not differenti-
ate resilient and vulnerable individuals. Conversely, connectivity
differences between Default and Visual networks were predictive of
vulnerability, but were not significant features of state-related changes
in connectivity.

Connectivity changes following sleep deprivation were different in vulnera-
ble and resilient subjects

The more resilient and the more vulnerable persons did not show
significant differences in connectivity (with whole brain signal regres-
sion) during the sleep-deprived state. Therefore the matrix showing
the direct comparison of state-related connectivity alterations between
these groups (Fig. 4b) thus resembles connectivity differences observed
in the rested state (Fig. 4a).

Indeed, compared to vulnerable subjects, resilient subjects exhibited
greater increase in anti-correlations (cool colors) in the well-rested
state relative to the sleep-deprived state with borderline significance
(Fig. 4b; p b 0.05 corrected for multiple comparisons for one of the
three network-based statistic thresholds; p = 0.06 for the remaining
thresholds).

Another way of describing this finding is to note that the resilient
subjects who exhibited greater anti-correlations (cool colors) between
Default and Attention networks in the rested wakefulness state evi-
denced a relatively larger reduction in anti-correlation following sleep
deprivation (119 out of 450 ROI pairs with p b 0.05 corrected for multi-
ple comparisons).

Analyses without whole brain signal regression

The pairwise functional connectivity (without whole brain signal re-
gression) among the 114 cortical ROIs during rested wakefulness is
shown in Fig. 5a. Correlations were stronger within networks than be-
tween networks, consistent with the fact that almost identical cortical
parcellations were obtained with and without whole brain signal re-
gression (Yeo et al., 2014).

Functional connectivity differences (without whole brain signal re-
gression) among 122 cortical and subcortical ROIs between the well-
rested and sleep-deprived stateswere computed. Functional connectiv-
itywithin the cerebral cortexwas significantly higherwhen participants
were sleep-deprived (p b 0.005 corrected). The increase in functional

Fig. 4.Vulnerability to sleep deprivation is predictable during restedwakefulness. (a) Connectivity differences between resilient (RES) and vulnerable (VUL) subjects during restedwake-
fulness. ROI arrangement follows Figs. 1b and c and only ROI pairs showing weaker correlations for resilient subjects with p b 0.05 corrected (using network-based statistic threshold of
p b 0.05) are colored. Only weaker correlations (cool colors) are statistically significant (p b 0.005 corrected for multiple comparisons). One prominent difference is that resilient subjects
have stronger anti-correlations (more negative) between Default networks (A and B) and Attention networks (Dorsal Attention A and B, Salience/Ventral Attention A). Resilient persons
also showed greater anti-correlations between both Attention networks and Control network B as well as between Default networks (A and B) and Visual network B. (b) Differences in
functional connectivity changes (after sleep deprivation) between resilient and vulnerable subjects. Only ROI pairswith p b 0.05 corrected using network-based statistic initial threshold of
p b 0.05 are colored (c.f. Fig. 2). Compared to vulnerable subjects, resilient subjects exhibited greater increase in anti-correlations (cool colors) in thewell-rested state relative to the sleep-
deprived state with borderline significance (p b 0.05 corrected for multiple comparisons for one of the three network-based statistic thresholds; p = 0.06 for the remaining thresholds).
The converse is not statistically significant when corrected for multiple comparisons.
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connectivity with sleep deprivation was evident for almost all pairs of
cortical regions (Fig. 5b), as well as between subcortical and cortical re-
gions except the thalamus (Fig. 5c).

The decrease in thalamocortical connectivity was very prominent
(Fig. 5c) and consistent with previous work (Spoormaker et al., 2010),
but was not significant when corrected for multiple comparisons prob-
ably because of the (statistical) domination of increased corticocortical
connectivity during sleep deprivation.

Functional connectivity differences (without whole brain signal re-
gression) among 122 cortical and subcortical ROIs between resilient
and vulnerable subjects during the rested wakefulness state were com-
puted. The more resilient subjects exhibited significantly higher con-
nectivity, although the differentiation was weaker (p b 0.05 corrected
for only two of the three NBS thresholds) than in the analyses with
whole brain signal regression. This increase in functional connectivity
held true for almost all pairs of brain regions (not shown).

We emphasize that there is no contradiction despite apparent dis-
crepancies between connectivity changes with and without whole
brain signal regression. As previously mentioned, functional connectiv-
ity with whole brain signal regression measures fluctuations of fMRI
signals relative to thewhole brain signal. In contrast, functional connec-
tivity without whole brain signal regression measures fluctuations of
total fMRI signals. We will return to this point in the discussion.

Controlling for confounding factors

The analysis of connectivity changes due to sleep deprivation (Figs. 2
and 3) was repeated (N= 43) with (1) volumes removed due to wake-
up calls, (2) equal number of volumes in the well-rested and sleep-
deprived states and (3) comparable motion during both states. For
both states, average numbers of volumes were 272.6 per subject. In
this subset of subjects, average motion during rested wakefulness and
sleep deprivation were both 0.06 mm (p = 0.98). The connectivity
changes in this subset of subject were very similar to the original anal-
ysis (r = 0.91 with respect to Figs. 2 and 3).

During the rested state, there were on average 0.2 ± 0.4 and 0.2 ±
0.5wake-up calls per run for resilient and vulnerable groups respective-
ly (p = 0.996). In addition, there was no significant motion difference
between resilient (averagemotion=0.06mm) and vulnerable subjects
(average motion = 0.06 mm) during rested wakefulness (p = 0.36).

Therefore differences in motion and the number of wake-up calls
were unlikely to account for the more negative correlations in resilient
subjects during rested wakefulness.

We also explored the sensitivity of our analyses to the median split-
ting of each group of subjects into vulnerable and resilient subjects.
First, the analysis comparing resilient and vulnerable subjects during
rested wakefulness was repeated for each of the three groups separate-
ly. The connectivity differences between the more resilient and the
more vulnerable subjects within each group were consistent (r =
0.60, 0.53 and 0.66 respectively)with the original analysis (Fig. 4a). Sec-
ond, we replicated the analysis using a ternary split, rather than amedi-
an split. There was good agreement between the median and ternary
splits (r = 0.79). Third, we directly correlated functional connectivity
during the well-rested state with the number of lapses during sleep
deprivation. The results were again similar to the median split results
(r = −0.72). However, the above results were not significant when
correcting for multiple comparisons.

Finally, CompCor and whole brain signal regression yielded similar
pattern of connectivity changes in the sleep-deprived state (r = 0.87)
and between resilient and vulnerable subjects in the well-rested state
(r= 0.87). The similarity between CompCor and whole brain signal re-
gressionmay be due to 62% variance of thewhole brain signal (on aver-
age across subjects) explained by the CompCor components (p b 0.001),
suggesting that at least in our data, CompCor strategy might be implic-
itly removing whole brain signal in addition to physiological noise.

Discussion

When functional connectivity was measured relative to the whole
brain signal (i.e., whole brain signal regressed), functionally connected
cortical regions in the rested state (e.g., within Default network) evi-
denced reduced correlation following sleep deprivation, suggesting
that highly integrated networks become less integrated during sleep
deprivation. In contrast, anti-correlated regions in the rested state (e.g.
Default and Attention networks) became less so, suggesting that highly
segregated networks become less segregated during sleep-deprivation
(Fig. 6a).

Persons more resilient to vigilance decline showed stronger anti-
correlations among several networks during rested wakefulness
(Fig. 6b). The differences in functional connectivity between the

Fig. 5. Analyses of sleep deprivation connectivity changes without whole brain signal regression. (a) Z-transformed pairwise functional connectivity among the 114 cortical ROIs during
rested wakefulness. (b) Corticocortical and (c) subcortical–cortical connectivity changes due to sleep deprivation. The increase in functional connectivity with sleep deprivation was
(b) evident for almost all pairs of cortical regions, as well as (c) between subcortical and cortical regions, except the thalamus (p b 0.005 corrected).
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resilient and vulnerable subjects only partially overlap with connectivi-
ty alterations following sleep deprivation. In contrast to corticocortical
connectivity, subcortical–cortical and between-subcortical connectivity
were similar across resilient and vulnerable groups despite prominent
changes across states.

An unanticipated set offindings concerns thewidespread increase in
whole brain fMRI signal across the entire brain (except the thalamus)
following sleep deprivation. This results in higher correlations of total
fMRI signals throughout the brain and reduction in thalamocortical con-
nectivity. The strong increase in whole brain fMRI signal may mask im-
portant fluctuations in fMRI signals relative to the whole brain signal.
For example, the strong reduction in anti-correlations between Default
and Dorsal Attention networks (when whole brain signal is regressed)
is masked by significant increase inwhole brain fMRI signal in both net-
works after sleep deprivation (Fig. 7). Together, our results reconcile
seemingly discrepantfindings regarding state related connectivity shifts

(De Havas et al., 2012; Sämann et al., 2010; Spoormaker et al., 2010),
suggesting possible value in regressing whole brain signal in contexts
where widespread shifts in whole brain signal occur (Thompson et al.,
2013).

State-related changes in total fMRI connectivity and whole brain signal

During the transition from wake to sleep (and from light sleep to
deep sleep) there is a progressive disengagement from the external en-
vironment evident from the higher sensory arousal thresholds associat-
ed with deep sleep relative to light sleep (Rechtschaffen et al., 1966).
Given that the thalamus relays sensory information to the cerebral cor-
tex, this disconnection from the external environment may result from
decreased connectivity between the sensory cortex and the thalamus.
Indeed, reduction in thalamic activity precedes cortical deactivation by
several minutes (Magnin et al., 2010). Furthermore, there is increased

Fig. 6. Illustration of distributed large-scale cortical networks changes following sleep deprivationwithwhole brain signal regression. (a) Cortical regions that were functionally connected
during the rested state (e.g., regions of theDefault network) evidenced reduced correlation following sleepdeprivation (toppanel), suggesting that highly integrated brain regions become
less strongly coupled during sleep deprivation. On the other hand, regions that were anti-correlated in the rested state (e.g., Default and Attention networks) became less so (lower panel),
suggesting that highly segregated networks become less segregated during sleep-deprivation. (b) Correlation between Default andAttention networks in resilient and vulnerable subjects
during the well-rested and sleep-deprived states. Correlation values from 450 ROI pairs between Default networks (A and B) and Attention networks (Dorsal Attention A and B, Salience/
Ventral Attention A)were averaged for each subject. These correlation values were then averaged among the resilient and vulnerable subjects during the well-rested and sleep-deprived
states. We emphasize that the correlations shown here are for illustration, and not unbiased estimates of differences between resilient and vulnerable subjects (Vul et al., 2009).

Fig. 7. Signal fluctuations in Default (red) and Attention (green) networks (a) during rested wakefulness and (b) following sleep deprivation. Whole brain signal fluctuations (bottom
panel) were significantly stronger following sleep deprivation. Relative fluctuations of Default and Attention network regions (top panel) were dominated by the whole brain signal
when whole brain signal regression was omitted (middle panel). This resulted in an increased correlation between Default and Attention networks when whole brain signal was not
regressed.
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corticocortical connectivity and reduced thalamocortical connectivity
when whole brain signal is not regressed (Spoormaker et al., 2010).
Our results of increased corticocortical connectivity (Fig. 5b) and re-
duced thalamocortical connectivity (Fig. 5c) when whole brain signal
is not regressed suggest that connectivity changes during sleep depriva-
tion are very similar to connectivity changes in the transition fromwake
to sleep.

The dissociation of state-related changes in corticocortical and
thalamocortical connectivity might be explained by the relative compo-
sition of thewhole brain signal. Thewhole brain fMRI signal is known to
be strongly present in the thalamus in the well-rested state (Zhang
et al., 2008; Fox et al., 2009). In our data, the average correlation be-
tween the whole brain signal and all thalamic voxels was 0.12 in both
the well-rested and sleep-deprived states. By contrast, the average cor-
relations between the whole brain signal and all cortical regions were
0.13 and 0.18 in the well-rested and sleep-deprived states respectively.
Therefore the relative composition of thewhole brain signal significant-
ly increases in the cerebral cortex (but not the thalamus) during sleep
deprivation (p b 0.001), resulting in stronger correlations of total fMRI
signals within the cerebral cortex (Fig. 5b) and decreased correlations
between the cerebral cortex and the thalamus (Fig. 5c).

Our results are also consistent with previous work reporting a close
association between the whole brain fMRI signal and EEG correlates of
decreased vigilance (Wong et al., 2013). Indeed, we found that the stan-
dard deviation values of the whole brain signals (averaged across all
subjects) were 2.3 and 3.2 in the well-rested and sleep-deprived states
respectively (p b 0.001). The increase in whole brain signal amplitude
may be related to an overall increase in cortical excitability with
sustainedwakefulness reflecting sleep homeostasis (Huber et al., 2013).

State-related changes in relative corticocortical connectivity

The overall increase inwhole brain fMRI signal couldmask signal fluc-
tuations relative to thewhole brain signal, whichmay be a criticalmarker
of state-related functional changes. When whole brain signal was
regressed, there was reduced connectivity within the Default network
and weakened anti-correlations between the Default and Attention net-
works during sleep deprivation (De Havas et al., 2012; Sämann et al.,
2010). While state-related changes can be ascribed to entire networks
(Horovitz et al., 2009; Larson-Prior et al., 2009), closer scrutiny suggests
heterogeneous connectivity shifts across sub-networks (Fig. 2 of
Sämann et al., 2011). This is consistent with recent studies highlighting
the functional heterogeneity of the Default network (Andrews-Hanna
et al., 2010; Laird et al., 2009; Leech et al., 2011; Uddin et al., 2009; Yeo
et al., in press).

By exploiting a recently published cortical parcellation (Yeo et al.,
2011), we demonstrated finer-grained network changes across the en-
tire brain, refining the findings of previous work (De Havas et al., 2012;
Sämann et al., 2010). For example, reduction in intra-network connec-
tivity within the Default network was the strongest within Default net-
work A. Similarly, significant reductions in anti-correlations between
Default and Attention networksmostly spare Default network C and Sa-
lience/Ventral Attention network B.

The anti-correlations between Default and Attentional networks are
thought to be pivotal in segregating internally and externally oriented
cognition. The reduced segregation of anti-correlated networks might
coincide with the occurrence of hypnagogic hallucinations where vivid
and sometimes bizarre multi-sensory experiences can be reported
(Rowley et al., 1998). A similar breakdown in the balance of internal
and external processing systems has also been linked with psychosis,
which is characterized by a loss of touch with reality, delusions and
hallucinations (Baker et al., 2014; Buckner, 2013; Whitfield-Gabrieli
et al., 2009).

Overall, our results suggest that highly integrated cortical regions
become less strongly coupled during sleep deprivation, while highly
segregated networks become less segregated during sleep-deprivation.

State-related changes in relative subcortical connectivity

During rested wakefulness, the thalamus was positively correlated
with Salience/Ventral Attention network, but anti-correlated with the
Dorsal Attention network. We speculate that the positive correlation
might arise from the Saliance/Ventral Attention network's role in
redirecting attention to salient changes in the external environment
(Corbetta and Shulman, 2002; Seeley et al., 2007). By contrast, the
anti-correlation might arise from the suppression of reactive allocation
of sensory resources to salient environmental stimuli by top-down
attention.

Unexpectedly, changes in thalamic connectivity with Dorsal Atten-
tion networks (Shao et al., 2013) and Salience/Ventral Attention net-
works during sleep deprivation do not correlate with vulnerability to
vigilance decline. Their functional significances need to be established
in future studies.

Predicting vulnerability to sleep deprivation with functional connectivity

Persons more resilient to vigilance decline following sleep depriva-
tion exhibit stronger whole brain signal during the rested-state as evi-
denced by the higher correlations of total fMRI signals throughout the
brain. However, resilient and vulnerable subjects were more strongly
differentiated when relative fluctuations about the whole brain signal
were considered, i.e., when whole brain signal was regressed.

A novel finding of the present study is that greater anti-correlation
among several networks during rested wakefulness were associated
with vulnerability to vigilance decline following sleep deprivation
(Fig. 6b). Persons with greater segregation between Default networks
(A andB) andVentral/Saliencenetwork Amight bemore resilient on ac-
count of their ability to differentiate internally and externally oriented
cognition. This reasoningmight be extended to nodes within Dorsal At-
tention network A and Control network B, which include parts of the
intraparietal sulcus, putative frontal eye fields and dorsolateral prefron-
tal cortex that are involved in the control of externally focused attention
(Corbetta and Shulman, 2002; Dosenbach et al., 2007; Fedorenko et al.,
2013; Yeo et al., in press).

Using a leave-one-out procedure, we were able to achieve a leave-
one-out classification accuracy of 60.3%. The modest classification accu-
racy given this relatively big dataset suggests that there remains signif-
icant work to be done in order to establish reliable neuroimaging
biomarkers of sleep deprivation vulnerability.

The classification accuracy using functional connectivity is slightly
inferior to that of diffusion drift modeling (Patanaik et al., 2014) or
heart rate variability (Chua et al., 2012). Therefore the inclusion of mea-
sures, such as respiratory and heart rate, can potentially improve the
prediction of sleep deprivation vulnerability. Unfortunately, we did
not have the interface system necessary to time-lock the physiological
information to the scans, so these data were not collected.

Similarity and differences in vulnerability markers and state-related
changes in relative fMRI connectivity

The more resilient and the more vulnerable subjects exhibited dis-
similar connectivity patterns in the rested state (Fig. 4a). Patterns of
functional connectivitymodulated by sleep deprivation (Fig. 2) only par-
tially overlapped with those predicting vulnerability to vigilance decline
(Fig. 4a). Interestingly, the functional connectivity of resilient and vul-
nerable subjects became similar following sleep-deprivation (Fig. 4b).

This apparent equalization of differences in connectivity irrespective
of vulnerability to SD is puzzling. A possible technical reason is that the
smaller amount of data collected in the sleep-deprived state compared
to the rested state resulted in reduced statistical power. However, we
(De Havas et al., 2012) also did not find a correlation between perfor-
mance change across state and Default connectivity despite analyzing
up to 36 min of task-regressed connectivity data.
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While functional connectivity differences between resilient and vul-
nerable subjects were the strongest during the rested state, task activa-
tion differences between resilient and vulnerable subjects were the
strongest during the sleep-deprived state (Chee and Tan, 2010; Chuah
and Chee, 2008; Chuah et al., 2009). Relatively preserved task-related
deactivation may be associated with relatively conserved behavioral
performance (Chee and Chuah, 2007).

A possible explanation for the difference between task-related and
thepresent resting-state fMRI resultsmight lie in inter-individual differ-
ences in how relevant networks are recruited or deactivated during
sleep deprivation during task performance. ‘Static’ functional connectiv-
ity assessed during the ‘wake-state’ instability of the sleep-deprived
state may thus inadequately reflect functional connectivity at critical
moments during task performance. As such task-related (Fornito et al.,
2012; Krienen et al., 2014; Tomasi et al., 2014) and dynamic (Allen
et al., 2012; Hutchison et al., 2013; Zalesky et al., 2014) functional con-
nectivity could potentially yield further insights.

In sum, functional connectivity between the Default and Attention
networks in the rested state appears to be a marker for vulnerability
to vigilance decline following sleep deprivation. Functional connectivity
clearly changes with state as well. However, it appears that the latter
may be necessary but insufficient to account for vigilance decline. Dif-
ferences in the ability to recruit fronto-parietal circuits or deactivate
parts of the Default network during task performance might be more
important determinants of performance in the sleep-deprived state
than static functional connectivity. An integrated study where task-
related, static and dynamic functional connectivity are evaluated is nec-
essary to test this hypothesis.

Wake-up calls

Removing volumes associated with wake-up calls did not signifi-
cantly affect our results. It should be noted that these long episodes
(10 s) of eye closures constitute only a minority of the total number of
eye closures in the sleep-deprived state, so the robust results may not
be surprising. These longer eye closures, which may represent
microsleeps, are a critical feature of sleep deprivation, so it would not
make sense to remove all periods of eye closures. Long periods of eye
closures are removed because otherwise, we would simply be studying
the neuroimaging signatures of sleep. Indeed, a critical motivation of
our study is to include periods of “wake-state instability” in the analysis.

Conclusion

This study discovered functional connectivity between brain regions
that were predictive of sleep deprivation vulnerability. Our results sug-
gest that more resilient individuals may be better able to maintain seg-
regation of highly segregated networks when well-rested. While we
gained some insight into the potentialmechanismunderlying resiliency
to sleep deprivation, the modest classification accuracy suggests that
there remains significant work to be done in order to establish reliable
neuroimaging biomarkers of sleep deprivation vulnerability. The most
appropriate spatial scale for characterizing state-related changes
would also benefit from further clarification.
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