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INTRODUCTION
The negative consequences of sleep deprivation on cogni-

tive performance are well documented.1–3 Lapses in atten-
tion resulting from sleep deprivation contribute to industrial 
catastrophes, medical errors, transportation accidents, and 
security breaches.4–8 Sleep deprivation is thought to impair 
neurobehavioral functioning by destabilizing performance, as 
evidenced by the capacity to perform well for short periods of 
time, interrupted by occasional attention failures.9 The extent 
to which sleep loss affects performance varies widely across 
individuals, however, with some subjects remaining relatively 
unaffected while others show severe cognitive impairment.9 
Notably, between-subject differences in performance are trait 
like and stable across repeated exposures to sleep deprivation, 
irrespective of sleep history.10–12 Over the past decade, several 
studies have shown that subjects who are vulnerable versus 
resistant to the effects of sleep loss differ in their brain activa-
tion and behavioral performance when they are well rested.13–19 
Such findings suggest that baseline measures can be used to 
predict how well a person will perform when he/she is de-
prived of sleep.

One of the most sensitive measures of performance impair-
ment by sleep deprivation is vigilance,20 commonly assessed 
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using the psychomotor vigilance task (PVT).21 During the 
PVT, participants maintain their fastest possible reaction 
time (RT) to a simple visual stimulus presented at random 
interstimulus intervals. Recently, it was shown that subjects 
who are vulnerable to the effects of total sleep deprivation on 
PVT performance show slower and more variable response 
times when they are well rested.17 In separate work, subjects 
categorized as vulnerable or resistant to sleep deprivation 
differed in their diffusion drift parameters derived from PVT 
RT data sampled at baseline.19 These studies demonstrate that 
baseline PVT performance carries information about vulner-
ability to subsequent sleep deprivation, but it remains unclear 
whether features of rested PVT performance can be used to 
classify a person’s relative performance in the sleep deprived 
state.

The current study sought to assess the reliability of classi-
fying subjects as vulnerable or resistant to sleep deprivation, 
using baseline features of PVT performance. We used two 
independent datasets to carry out our analysis involving PVT 
data collected from different laboratories under different ex-
perimental conditions. We extracted standard RT metrics, dif-
fusion model parameters, and features derived from spectral 
analysis of RTs, and used a support vector machine (SVM) 
classifier with stratified fivefold cross-validation (CV5) to es-
timate generalization error. The objectives of this work were 
fourfold:

1.	 Identify and rank candidate features derived from base-
line PVT response times that predict vulnerability to 
sleep deprivation.

2.	 Select a compact feature set from the candidate features 
resulting in maximum prediction accuracy, and measure 
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the performance of this classification model for each 
dataset.

3.	 Evaluate the reliability of classification by training the 
model on one dataset and testing it on another one.

4.	 Evaluate test-retest performance of classification by 
training the model using baseline data collected during 
one study visit, and then testing it using baseline data 
collected more than 5 months later from the same set of 
individuals.

MATERIAL AND METHODS

Subjects
In the current investigation, we analyzed PVT data collected 

from two laboratories. For Dataset 1, a total of 135 subjects 
(69 females, age 18–25 y) who participated in five different 
functional imaging studies22–26 were evaluated. All five experi-
ments in this dataset were conducted at the Cognitive Neuro-
science Laboratory, under similar experimental conditions. For 
Dataset 2, 45 healthy ethnic-Chinese subjects (3 females, age 
22–32 y) were enrolled in a laboratory study at the Chronobi-
ology and Sleep Laboratory (CSL) as part of a previous study.17 
Both datasets shared some common recruitment criteria. For 
example, health was assessed using screening questionnaires 
and self-reported medical history. Participants who took medi-
cations or consumed nicotine products were excluded. In the 
week before the laboratory study, participants were required 
to maintain a consistent sleep-wake schedule (6.5–9 h of sleep 
every day in Dataset 1, and 8 h time in bed for sleep in Dataset 
2), which was verified by actigraphy monitoring (Actiwatch-L 
or Actiwatch 2, MiniMitter, Inc., Bend, OR). In the week prior 
to the study, subjects were asked to avoid caffeine, alcohol, and 
over-the-counter medications. Informed consent was obtained 
from all participants, and research procedures were approved 
by the National University of Singapore Institutional Review 
Board (IRB) and the SingHealth Centralized IRB for Dataset 1 
and Dataset 2, respectively.

Sleep Deprivation Procedures
Dataset 1: Subjects arrived at the laboratory at 19:30 and 

were kept awake continuously overnight under supervision of a 
research assistant. A handheld 10-min PVT was administered 
every hour from 20:00 to 05:00 (10 test periods). Subjects were 
seated upright during testing and were exposed to ordinary 
room light. Participants’ movements were not restricted be-
tween PVT tests.

Dataset 2: Subjects underwent total sleep deprivation in a 
laboratory suite that was shielded from external time cues. Par-
ticipants arrived in the evening and went to bed at their regular 
prestudy sleep time. After 8 h of time in bed for sleep, sub-
jects were kept awake for at least 26 h using constant routine 
(CR) procedures, as previously described.27 During the CR 
procedure, subjects remained in bed in a semirecumbent posi-
tion, with exposure to dim ambient lighting (< 5 lux). The PVT 
was administered every 2 h (starting 2.5 h or 4.5 h after wake 
time) by computer using E-Prime 2 Professional software (Psy-
chology Software Tools, Inc., Sharpsburg, PA). Visual stimuli 
were presented on a liquid crystal display monitor placed on an 
over-bed table, which allowed subjects to take the PVT while 

remaining in bed. After undergoing sleep deprivation, partici-
pants were invited to return to the laboratory at least 5 months 
later to complete additional testing. A subset of subjects (n = 34) 
took part in the follow-up study. Subjects reported to the labo-
ratory in the mid-afternoon (between 14:00–18:00) and com-
pleted two 10-min PVTs taken 2 h apart from one another under 
conditions that were similar to the first study visit. The research 
protocols for both datasets are summarized in Figure 1.

Assessment of Vulnerability to Sleep Deprivation
During total sleep deprivation, cognitive performance usu-

ally reaches its nadir in the early morning hours, typically 
between 04:00 and 08:00, when the sleep homeostat and circa-
dian clock interact to promote high levels of sleepiness.28 This 
is also the period when sleepiness-related motor vehicle ac-
cidents are most likely to occur.29 We therefore analyzed PVT 
performance during this time window as a measure of suscep-
tibility to sleep deprivation. Subjects were categorized as vul-
nerable or resistant based on a median split on the number of 
lapses, defined as RTs that exceed 500 msec (Figure 1. PVTs 
marked in red). For Dataset 1, 70 subjects were categorized as 
vulnerable (≥ 5 lapses). For Dataset 2, 25 subjects were cat-
egorized as vulnerable (≥ 23 lapses), of whom 19 completed 
the follow-up study. The large difference in the median lapse 
value is likely a result of different experimental conditions be-
tween the two studies (see Discussion). The divergence in per-
formance between vulnerable and resistant groups after their 
usual bedtime is shown in Figure 2. For Dataset 1, the first 
two PVT tests administered at 20:00 and 21:00 were used as 
the baseline. For Dataset 2, the third and fourth PVT sessions, 
which were taken during the mid-afternoon, were used as the 
rested baseline, as PVT measurements for the follow up ses-
sion were available for the same time period.

RT-Derived Features
 As detailed in the next paragraphs, we used a combination 

of standard RT metrics, features derived from the drift diffu-
sion model (DDM), and spectral analysis of RTs.

Standard RT Metrics
The most widely used PVT outcome metric is the number 

of lapses followed by mean RT, mean 1/RT, fastest 10% RT, 
median RT, slowest 10% RT, and the slowest 10% 1/RT.30 
The reciprocal RT is also referred to as response speed 
(response speed = 1/RT). In an analysis of various PVT out-
come metrics during partial or total sleep deprivation, Basner 
and Dinges30 found that metrics involving response speed (RS) 
and lapses were the most sensitive to sleep loss. It was there-
fore recommended that these measures be used as the primary 
outcomes measures of the 10-min version of the PVT. In our 
analysis we considered lapses, mean RT, mean RS, slowest 
10% RS, fastest 10% RT, median RT, and standard deviation 
of RT. We also included mean absolute deviation (MAD) from 
the mean, and ΔRT > 250, which is the number of consecutive 
RTs that differ by more than 250 msec. The latter was included 
based on a previous finding that, under baseline conditions, 
subjects who were categorized as vulnerable to sleep depriva-
tion showed a greater number of consecutive RTs that differed 
more than 250 msec compared to resistant individuals.17
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Metrics Derived From DDM
The Ratcliff DDM31 is a powerful model of perceptual deci-

sion making for single-choice RT experiments such as the PVT. 
The model decomposes the decision process into decision and 
nondecision components (Figure 3A). The nondecision com-
ponent refers to time spent encoding the sensory input (pre-
decision time) as well as time spent in executing the decision 
(post-decision time). Decision-making itself is conceived to be 
a noisy process involving the accumulation of information over 
time32–34 that can be modeled mathematically as a diffusion 
process. An attractive feature of diffusion modeling is that it 
can predict the response time distribution under different con-
texts35 and varying levels of noise.36 The model has been tested 
by manipulating various facets of the decision process and then 
observing the corresponding change in diffusion parameters.37

More importantly, DDM parameters estimated prior to sleep 
deprivation have been shown to differ in groups of subjects 
categorized as vulnerable or resistant to total sleep deprivation, 
even when baseline standard RT metrics were similar.19

In the Ratcliff DDM used here, nondecision time was as-
sumed to vary from trial to trial according to a uniform distri-
bution with mean Ter and width St. Decision time was modeled 
using a single boundary diffusion process with a drift param-
eter. Evidence was assumed to accumulate from the starting 
point (at 0) until the boundary a was reached. The drift 

parameter was also allowed to vary across trials according to 
a normal distribution with mean ξ and standard deviation η 
(Figure 3B). This results in a model with fi ve parameters Θ = 
[a, Ter, St, ξ , η]; however, not all parameters of the model are 
uniquely identifi able.31 This is because the boundary param-
eter a can be scaled by equally scaling the drift parameters 
(ξ , η) without affecting the RT distribution. Therefore, scale 
invariant parameter ratios ξ /a and η/a  are used. For the sake 
of simplicity, from this point onward when we refer to the drift 
parameters it is implicitly assumed that they are normalized by 
the boundary parameter. We also included the parameter ratio 
ξ /η, which is the diffusion drift signal-to-noise ratio. This pa-
rameter is known to closely track alertness.31 While estimating 
the parameters of the model, we combined RT data from two 
consecutive PVT sessions taken during the baseline rested 
state. This was necessary to get reliable estimates of the pa-
rameters.19 The parameter estimation process is described in 
detail elsewhere.38

Metrics Derived From Spectral Analysis of RTs
Given that spatiotemporal features (i.e., structures in the 

ordering and positioning of the RTs) might not be captured by 
standard PVT metrics or the DDM, we used discrete wavelet 
transform (DWT) to extract multiresolution features from RTs. 
The DWT effectively addresses the tradeoff between time and 

Figure 1—(A) Dataset 1: Subjects (n = 135) arrived at the laboratory at 7:30pm and stayed awake overnight resulting in total sleep deprivation of ~22 h. 
A 10-min psychomotor vigilance task (PVT) was administered every hour from 8:00pm until 5:00am on the next morning. (B) Dataset 2: After an 8-h 
opportunity for sleep, subjects underwent sleep deprivation in the laboratory for at least 26 h. Every 2 h, subjects completed a 10-min PVT, indicated by 
the circles. A subset of subjects (n = 34) participated in a follow up session in which two PVTs were taken in the mid-afternoon. In each dataset, subjects 
were stratifi ed into vulnerable and resistant groups by performing a median split of PVT lapse data (reaction times > 500 msec) during the last session of 
sleep deprivation (red circles). Two baseline PVT sessions (green circles) were used to build the classifi er for predicting vulnerability to sleep deprivation.
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frequency resolution in signal analysis and can handle non-
stationary signals as well. It decomposes the signal into a hier-
archical set of low frequency and high frequency components 
called approximations and details, respectively. The DWT was 
computed by applying successive low-pass and high-pass fil-
tering in the time domain, resulting in a multilevel decomposi-
tion of the RTs at different scales. Intuitively, the DWT can be 
thought of as a mathematical microscope optimized to capture 
temporal structures on finer and finer scales. Because of the 
way DWT operates, the length of the signal has to be a power 
of 2. Because the number of RTs collected per PVT can vary 
widely across individuals, it is necessary to either truncate or 
to artificially extend the number of trials associated with each 
participant. To avoid introducing artifacts because of signal 
extension, and to maintain consistency across subjects and da-
tasets, we considered the last 26 = 64 PVT trials from each test. 

Samples from two consecutive PVTs taken 
during baseline were combined, resulting in 
uniform sample size of 128, and a six-level 
DWT was applied. For each level l, the mean 
absolute value (MAVl) was computed from 
the detail coefficients at that level. Details 
of the DWT analysis are presented in the 
supplemental material. The selected features 
were normalized to a unit sphere. 

Feature Selection
As summarized in the previous section, 

we examined a total of 20 PVT features of 
the baseline data, including nine standard RT 
features, five DDM features, and six wavelet 
features. The task of predicting the class 
label (vulnerable or resistant) from baseline 
RT data is essentially a supervised classifi-
cation problem. It is supervised in the sense 
that a pattern recognition algorithm (support 
vector machines [SVMs] in this case, dis-
cussed in the next section) was trained on a 
set of labeled data (i.e., it is known whether 
the subject is vulnerable or resistant). The 
trained algorithm was then applied to new 
test data. The term ‘generalization error’ re-
fers to the prediction error with respect to the 
new data and measures how well a learning 
algorithm generalizes to unseen data. The 
stratified k-fold cross validation method with 
k = 5 or 10 has been shown to be superior to 
other error estimation methods.39,40 We chose 
the fivefold stratified cross-validation (CV5) 
method in our analysis as tenfold cross-val-
idation would result in very small sample 
per fold because of the smaller sample size 
of Dataset 2. To carry out the cross valida-
tion, the original data was randomly parti-
tioned into five equally sized subsamples. 
Each subsample had the same proportion of 
vulnerable and resistant subjects. Of the five 
subsamples, one was retained as the test set 
and the remaining four were used to train the 

model. This was repeated five times, with each subsample used 
exactly once for testing. The accuracy was then aggregated 
over all the subsamples that constitute the CV5 accuracy.

In any supervised classification problem, identifying the es-
sential features is critical to the performance of the classifier. 
Some of the features might be irrelevant in the sense that they 
provide no additional information from the point of view of 
class prediction. Features could also be redundant, i.e., in the 
presence of other relevant features they provide no additional 
information. Moreover, irrelevant and redundant features in-
crease computational complexity and might introduce noise 
into the system, reducing the performance of the classifier. 
Therefore, a subset of features must be selected to optimally 
predict vulnerability. A naïve way of achieving this is to con-
sider all possible combinations of features and select the one 
that minimizes the generalization error. Unfortunately, this 

Figure 2—Time course of psychomotor vigilance task lapses in vulnerable and resistant 
groups for (A) Dataset 1 and (B) Dataset 2. Inset: Individual traces show the time course of 
lapses for each participant who underwent sleep deprivation. Mean ± SEM are shown.
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is computationally inefficient even for a moderately 
large number of features. Additionally, because the 
generalization error has to be estimated from data, a 
large number of searches increase the likelihood of 
overfitting, especially in the case of a small dataset.

For our analyses, we first eliminated highly redun-
dant or irrelevant features to shortlist a critical set of 
candidate features based on minimal redundancy-
maximal relevance (mRMR).41 This was conducted 
independently for each dataset. The mRMR is a mul-
tivariate feature selection method that is superior to 
univariate methods such as the t test and F-test based 
methods (refer to Saeys et al.42 for a review) and is 
widely used within machine learning and clinical 
communities. For example, mRMR has been used 
for feature selection in predicting drug-target interac-
tion,43 microarray gene expression data,44 and classifi-
cation using electroencephalographic signals,45 among 
others. The mRMR criterion subtracts the minimal 
redundancy from maximum relevance, thereby com-
bining both relevance and redundancy information 
into a single score for feature ranking (see supple-
mental material for details). It was observed that the 
classification accuracy stabilized by the eighth ranked 
feature for both datasets, when each feature was con-
sidered incrementally. Therefore, only the top eight 
features were selected as the candidate feature set for 
further analysis.

Even though a selected candidate feature is deemed 
relevant, including all such features does not necessarily result 
in a better classification rate as compared to using a smaller 
feature set. Hence, relevance does not imply optimality.46 As 
a result “the m best features are not the same as best m fea-
tures.”47 To maximize the accuracy of the classifier, a further 
compact subset of features was selected from the candidate 
features using a wrapper-based approach.46 A wrapper is a 
feature selector that is “wrapped” with the classifier to select 
features that result in the lowest generalization error. This is 
very similar to the naïve method described earlier, but used 
on a much smaller candidate feature set employing some heu-
ristic schemes instead of trying out all possible combinations 
of features. We employed both the incremental forward and 
backward selection wrapper schemes detailed previously.46 In 
the incremental forward selection scheme, we started with an 
empty set. Features from the candidate set that resulted in the 
highest accuracy were added one by one until further addition 
did not improve classification accuracy. Similarly, in the incre-
mental backward selection scheme, we started with all features 
in the candidate set and the least significant feature (in terms of 
accuracy obtained on remaining features) was incrementally 
removed until further removal of a feature reduced classifica-
tion accuracy.

Classifier
For classification we used SVMs with a radial basis func-

tion kernel.48 SVMs are powerful supervised classification 
methods with strong theoretical foundations in statistical 
learning theory and structural risk minimization. In addi-
tion to being simple to implement, SVMs provide very good 

classification accuracy and have a high tolerance of noise 
(see Kotsiantis49 for a review). A SVM is similar to logistic 
regression in the sense that both search for a linear sepa-
ration between the classes. The key difference between the 
two methods is that a standard SVM tries to maximize the 
margin between the two classes instead of minimizing the 
logistic cost function. For data that are not linearly sepa-
rable, a kernel function is used to transform the original 
data to a high-dimensional space, where the data is linearly 
separable. The exact details of the implementation are dis-
cussed in the supplemental material. All analyses were im-
plemented in Matlab 2013b, The MathWorks, Inc., Natick, 
MA, United States. The SVM was implemented in Matlab 
using LIBSVM.50 The complete feature selection process is 
summarized in Figure 4.

Statistical Analyses
Standard RT metrics are known to be stable and reproduc-

ible across studies.17 To test the reproducibility of the DDM pa-
rameters, parameters estimated from baseline data of Dataset 1 
collected in the first visit were compared with parameters esti-
mated from the follow up study using two-way repeated-mea-
sures analysis of variance (ANOVA) with group (vulnerable 
versus resistant) as the between-subject factor and schedule 
(first visit versus follow-up) as the within- subject factor.

The variation in DDM parameters for vulnerable and resis-
tant subjects on the evening before and the morning after sleep 
deprivation has been reported previously.19 As PVT measure-
ments for Dataset 2 were available across the day, DDM pa-
rameters were also estimated for the vulnerable and resistant 

Figure 3—(A) Components of reaction time (RT). (B) Drift diffusion model for one-
choice RT task. Reproduced with permission from Patanaik et al.19
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groups at different time of the day. This was also done using 
repeated-measures ANOVA (group as between-subject and 
time of day as within-subject factor, with data binned for two 
sessions of the PVT). For ANOVAs with statistically signifi-
cant interaction, post hoc t tests were used to examine simple 
effects of group and time. The classifiers were compared using 
McNemar test with Yates correction. Statistical analyses were 
performed using SPSS (IBM Corp., New York, NY). Statis-
tical significance was set at α = 0.05.

RESULTS
In each dataset, the top eight features ranked according to 

their mRMR score are shown in Figure 5. As described in 
Methods, a wrapper-based approach was used to select a subset 
of features that minimized the generalization error. In the next 
section we report classifier accuracy as assessed by cross vali-
dation (CV5 accuracy) of features using the optimal feature set.

Model Performance in Dataset 1
A CV5 accuracy of 77% was obtained with sensitivity of 

85.7% and specificity of 67.7% by using five features: diffusion 
drift ξ , variability in diffusion drift η, range of nondecision time 
St, the number of consecutive RTs that differed by more than 250 
msec (ΔRT > 250), and wavelet feature MAV6 (Figure 6A). The 
receiver operating characteristic (ROC) curve and associated 
confusion matrix are presented in Figure 6A. The area under the 
ROC curve (AUC) is often used as a single-value representation 

of overall classifier performance and is equivalent to the prob-
ability that the classifier will rank a randomly chosen positive 
instance higher than a randomly chosen negative instance. For 
Dataset 1, the AUC for the classifier was 0.75.

Model Performance following Training on Dataset 1 and Testing 
on Dataset 2

We trained the model on Dataset 1, using the corresponding 
five features deemed most optimal and applied this feature set 
to Dataset 2. An accuracy of 71.1% was obtained with sensi-
tivity of 80% and specificity 60%. On varying the threshold 
for the classifier, a more balanced result was obtained with 
sensitivity of 72% and specificity of 70% while the accuracy 
remained unchanged. The ROC and confusion matrix at the 
default threshold as well as the balanced threshold are pre-
sented in Figure 7. AUC for the classifier was 0.73.

Model Performance in Dataset 2
For Dataset 2, diffusion drift ξ , range of nondecision time St, 

and the number of consecutive RTs that differed by more than 
250 msec (ΔRT > 250) were deemed most important. A CV5 
accuracy of 82.2% was obtained with sensitivity of 84% and 
specificity of 80% using three features: diffusion drift ξ , range 
of nondecision time St, and the number of consecutive RTs that 
differed by more than 250 msec (ΔRT > 250). The ROC and 
associated confusion matrix are presented in Figure 6B. For 
Dataset 2, the AUC for the classifier was 0.74.

Figure 4—Summary of the overall feature selection process. The process was applied independently on both datasets. CV5, fivefold stratified cross-
validation; DDM, drift diffusion model; PVT, psychomotor vigilance task; RT, reaction time; SVM, support vector machine.
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Reproducibility of Classification across 
Testing Episodes in the Same Participants

Using the optimal feature set selected in 
Dataset 2, when the model was trained on 
baseline PVT data collected during the first 
visit and then tested on PVT data from the 
follow-up visit, we obtained an accuracy of 
79.4%, with sensitivity of 73.7% and speci-
ficity of 86.7%.

Classification Using the Most Sensitive PVT 
Measures

Although standard PVT metrics were not 
selected by the model, we considered the 
possibility that such measures might none-
theless carry information about vulnerability 
to sleep deprivation. Using lapses, mean RS, 
and slowest 10% RS measured at baseline, 
three measures previously found to be sensi-
tive to total sleep deprivation,30 we obtained 
a CV5 accuracy of 64.4% on Dataset 1 and 
CV5 accuracy of 68.9% on Dataset 2. Com-
pared to the best performing features for 
each dataset, classification accuracy using 
these PVT measures was significantly poorer 
in the case of Dataset 1 (χ

1
2 = 10.2, P < 0.005) 

but not significantly different for the smaller 
Dataset 2, (χ

1
2 = 1.8, ns).

DDM Variability across Visits and with Time; 
Computational Performance

Except for across-trial variability in 
drift η (F1,32 = 4.65, P < 0.05), DDM pa-
rameters were stable across study visits 
(Figure 8). Vulnerable subjects had lower 
mean drift (F1,32 = 11.6, P < 0.005) and higher 
variability in nondecision time (F1,32 = 13.6, 
P < 0.001) across both visits compared to re-
sistant subjects. Although DDM parameters 
were significantly affected by time of the day 
(Figure S1, supplemental material), vulner-
able subjects had lower mean diffusion drift 
(F1,43 = 4.03, P < 0.001) and higher variability 
in nondecision time (F1,43 = 27.5, P < 0.001) 
irrespective of time elapsed since wake.

The feature extraction process was rea-
sonably quick (~10 min/subject) when run on 
a contemporary workstation (six core Intel® 
Xeon® 3.2 GHz with 16 GB of RAM), with 
the majority of time spent estimating the 
DDM parameters. Overall, the χ2 DDM fit (at 
baseline) for Dataset 1 was 19.2 ± 6.1  and for Dataset 2 it was 
16.8 ± 7.2.  The critical value for χ2, df = 14 was 26.1.

DISCUSSION
We observed large between-subject differences in PVT per-

formance during sleep deprivation, such that persons vulner-
able to sleep deprivation had on an average three to eight times 
more lapses than members of the resistant group. Although 

prior studies have identified baseline differences between in-
dividuals who are either vulnerable or resistant to sleep depri-
vation, the ability to predict performance vulnerability using 
baseline data has not been systematically examined. Here, we 
examined features beyond summary statistics conventionally 
used in assessing RTs, including measures derived from the 
DDM and spectral analysis. Using two independent datasets, 
we identified a subset of PVT features that can be used to 

Figure 5—Stratified fivefold cross-validation (CV5) accuracy of the classifier as features 
ranked by minimal redundancy-maximal relevance (mRMR) criterion were incrementally 
added to the feature set for (A) Dataset 1 and (B) Dataset 2. The top eight features in each 
dataset (partitioned by vertical line) were considered for the candidate feature set. The feature 
set was composed of 5 drift diffusion model parameters (mean drift: ξ /a, across trial variability 
in drift: eta, mean nondecision time: Ter, variability in non-decision time: St, drift signal to noise 
ratio: driftSNR); nine standard reaction time (RT) metrics (mean RT, mean response speed 
(RS), fastest 10% RT, median RT, slowest 10% RS, median RT, standard deviation of RT: std 
RT, mean absolute deviation of RT: MAD RT and the number of consecutive RTs that differ by 
more than 250 msec: ΔRT > 250); and six metrics derived from spectral analysis of RTs (mean 
absolute value of detail coefficient at level 1 through level 6: MAV1 to MAV6).
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classify relative vulnerability to total sleep deprivation with 
about 77–82% accuracy.

Features Most Useful for Discriminating 
Vulnerable and Resistant Participants

Despite substantial differences in 
the way that PVT data were collected 
across the two studies considered here, 
DDM parameters and wavelet MAV pa-
rameters were among the top baseline 
features associated with relative vulner-
ability to sleep deprivation. In terms of 
best performing features, three features 
were selected in both datasets: diffu-
sion drift ξ , range of non-decision time 
St, and the number of consecutive RTs 
that differ by more than 250 msec (ΔRT 
> 250, Table 1). Interestingly, none of 
the standard PVT performance metrics 
(e.g., mean RT and lapses) were selected 
when the mRMR criterion was used. 
The empirical data collected suggest 
that relative to standard RT metrics, the 
DDM better captures useful informa-
tion embedded in RT data that can dis-
tinguish persons vulnerable to vigilance 
decline following sleep deprivation by 
decoupling RT into distinct components. 
This is consistent with a previous study 
where diffusion parameters measured at 
baseline predicted vulnerability despite 
the absence of significant differences 
in baseline standard RT metrics.19 This 
might not be surprising upon inspecting 
the variation of the DDM parameters for 
the two groups across the day for Da-
taset 2 (Figure S1). Although the mean 
diffusion drift and range of nondecision 
time showed statistically significant dif-
ferences across groups irrespective of 
time of day, the mean non-decision time 
and across-trial variability parameters 
showed interesting variations throughout 
the day. Depending on the time of the 
day, DDM parameters moved in oppo-
site directions; i.e., some DDM param-
eters had a tendency of increasing the RT 
while others had a tendency to decrease 
it. In other words, the decision and non-
decision components can trade off with 
each other without affecting overall ob-
served performance. This has also been 
demonstrated using simulations.19

Classification Reliability and 
Reproducibility

PVT outcomes can be affected by 
multiple factors including experimental 
conditions, interventions, and time of 
day. Here, we showed that the same set 

of features appear to be highly discriminatory across data-
sets. For Dataset 1, five features were selected by the model: 

Figure 6—Receiver operating characteristic (ROC) curves obtained by varying the threshold of class 
membership probability of the support vector machine classifier for (A) Dataset 1 and (B) Dataset 
2 using the best set of features. The best performing point on the ROC curve is marked with a gray 
circle. Inset: confusion matrix, accuracy, sensitivity, and specificity at the best performing point. AUC, 
area under the ROC curve.
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diffusion drift ξ , variability in diffusion 
drift η, range of nondecision time St, ΔRT 
> 250, and MAV6. A CV5 accuracy of 77% 
was achieved using these features. Despite 
differences in experimental conditions and 
baseline data acquisition times between the 
two datasets, the model trained on Dataset 1 
and tested on Dataset 2 showed only a small 
drop in classification performance (71% ac-
curacy). Importantly, the model performed 
well despite the large difference in the av-
erage number of lapses between studies, i.e., 
the median split on Dataset 1 cannot be di-
rectly linked to the median split on Dataset 2. 
Allowing the threshold to change when the 
model trained on Dataset 1 was applied to 
Dataset 2 resulted in a more balanced clas-
sification. These results attest to the utility of 
our classification model for predicting rela-
tive vulnerability to sleep deprivation.

Because of aforementioned dataset differ-
ences, it might be expected that the best set 
of features selected by the model would be 
dissimilar across the two datasets. However, 
we found that of the five features assessed 
as most optimal for Dataset 1, three were 
again selected for Dataset 2 (diffusion drift ξ , 
range of no-decision time St, and ΔRT > 250). 
Using these features, CV5 accuracy of 82.2% 
was achieved. Importantly, when the classi-
fier was trained on PVT data collected during 
baseline of the first study visit in Dataset 2, 
performance of the model was similar to that 
for data analyzed during the follow-up visit 
(79.4% accuracy). Because the second visit 
occurred more than 5 months after sleep de-
privation, our results suggest that baseline 
diffusion drift ξ  and range of nondecision 
times St show stable between-subject dif-
ferences over time. Although the best set of 
features might change depending on the type 
of classifier used, the type of heuristic used, 
and the definition used for categorizing sub-
ject vulnerability, our findings nonetheless demonstrate 
that DDM parameters, wavelet parameters, and ΔRT > 
250 are useful for predicting vulnerability to decline in 
psychomotor vigilance following total sleep deprivation 
under laboratory conditions.

Differences Between Datasets
In Dataset 1, participants were free to walk around 

when not taking the PVT, and they were exposed to 
ordinary room light. In Dataset 2, PVT data were col-
lected under conditions that were conducive to poorer 
performance. Specifically, subjects were restricted to 
bed in a semi-reclined position in constant dim light. 
Also, in Dataset 2 we used baseline PVT data collected 
in the late afternoon, corresponding to the mid-afternoon dip 
in performance. By comparison, baseline PVTs in Dataset 

1 were taken in the late evening, corresponding to the wake 
maintenance zone when the circadian drive to remain awake 

Figure 7—Performance of the classifier trained on Dataset 1 and tested on Dataset 2 is 
demarcated by the gray circle on the receiver operating characteristic (ROC) curve. The 
corresponding confusion matrix, accuracy, sensitivity, and specificity are presented below. 
A more balanced classifier performance was obtained by changing the class membership 
probability threshold from its default value (marked with a black circle on the ROC). Although 
the accuracy did not improve, the sensitivity and specificity became more balanced. AUC, area 
under the ROC curve.
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Table 1—Most optimal features selected for each dataset. 

Dataset 1 Dataset 2
Diffusion drift ξ (51.9%) ΔRT > 250 (44.4%)
MAV6 (63.7%) Diffusion drift ξ (77.8%)
Range of non-decision time St (65.2%) Range of non-decision time St (82.2%)
ΔRT > 250 (75.6%)
Variability in drift η (77%)

The features are ordered according to their importance towards vulnerability 
prediction. Number in parenthesis show stratified 5-fold cross validation 
accuracy (CV5) achieved by including the corresponding feature as well as all 
features above it.
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is near its peak. The aforementioned experimental differences 
may explain, in part, the slightly better classification rates in 
Dataset 2 using a smaller number of features.

Definition of Vulnerability to Total Sleep Deprivation
In our analysis, group assignment was based on a median 

split using the number of lapses in the last session of sleep 
deprivation. The number of lapses (RTs > 500 msec) is the 
most commonly used PVT metric to assess the effects of sleep 
deprivation on sustained attention. We acknowledge, however, 
that vulnerability could be defined using other PVT outcome 
measures, e.g., response speed, or by individualizing the lapse 
threshold relative to each person’s baseline performance. Di-
viding each dataset into two groups enabled us to build a model 
that predicts a binary outcome (resilient or vulnerable), but it 
is important to note that vulnerability to sleep deprivation is a 
continuous variable. Hence, the decision to split the dataset by 
the median was arbitrary, and the ‘most vulnerable’ resistant 
subjects were qualitatively similar to the ‘most resistant’ vul-
nerable subjects, separated only by a few PVT lapses during 
sleep deprivation. Despite this limitation, subjects were clas-
sified with nearly 80% accuracy. Of note, although resistant 

and vulnerable groups differed by a few lapses even during the 
baseline rested state (Figure 2), the feature selection process 
did not select lapses in either dataset. Instead, vulnerability 
was better predicted by underlying decision and nondecision 
components of the DDM.

Further Improvements in Classification
The reliability of estimates for DDM parameters is affected 

by the size of the dataset.19,31 To ensure that we had sufficient 
data for the DDM, we combined PVT RT data across two con-
secutive 10-min PVT sessions, separated by 1 h (Dataset 1) or 
2 h (Dataset 2). DDM parameter estimates might be further 
improved by implementing longer PVT sessions (e.g., 20–30 
min in duration) or by aggregating data across more PVT ses-
sions. It must be kept in mind, however, that longer-duration 
PVTs are more affected by time-on-task effects,51 and adding 
more PVT sessions might not be practical if our model is to be 
applied in real-world settings. The classification might also be 
more accurate if participants are studied under baseline condi-
tions that are conducive to sleep. Adding other easily derived 
physiological measures, for instance, heart rate variability,52 
could also potentially improve the performance of the classifier.

Figure 8—Estimated drift diffusion model (DDM) parameters for vulnerable and resistant subjects estimated from baseline psychomotor vigilance task 
sessions measured across two study visits for Dataset 2. Of the 45 subjects who participated in the first study, 34 returned for a follow-up study after at 
least 5 months following their initial visit to the laboratory. Baseline individual differences in mean diffusion drift and variability in nondecision time were 
reproducible across study visits. Vulnerable subjects had lower mean drift (F1,32 = 11.6, P < 0.005) and higher variability in nondecision time (F1,32 = 13.6, P < 
0.001) across both visits compared to resistant subjects. The across-trial variability in diffusion drift appeared to be the only DDM parameter to be affected 
across the two studies (F1,32 = 4.65, P < 0.05). #, significant main effects of group on DDM parameters. Mean ± SEM are shown.
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CONCLUSION
In this study, we built a classifier to predict vulnerability 

in sustained attention during sleep deprivation, using features 
derived from PVTs taken under rested baseline conditions. We 
included a range of features including several summary sta-
tistics, DDM parameters, and features derived from wavelet 
transform of the RT sequence. We found that DDM parameters, 
including decision and nondecision components, the number 
of consecutive RTs that differ by more than 250 msec, and 
wavelet features can be used to discriminate sleep depriva-
tion vulnerable and resistant individuals with an accuracy of 
77–82% across datasets.
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Wavelet Transform
Discrete wavelet transform (DWT) allows a signal to be an-

alyzed at multiple scales. It decomposes the signal into a hier-
archical set of low-frequency and high-frequency components 
called approximations and details, respectively. The DWT is 
computed by successive low-pass and high-pass filtering in 
the time domain. First, the samples of RTs, r [n], are passed 
through a low-pass filter with impulse response g [n] resulting 
in a convolution of the two signals. The signal is simultane-
ously passed through a high-pass filter with impulse response 
h [n]. The outputs then give the detail coefficients (d [n]  from 
high-pass filtering) and the approximate coefficients (a [n] from 
low-pass filtering). The filter outputs are then subsampled:

	 	 (1)

	 	 (2)

The process is applied repeatedly to obtain multilevel de-
composition at different scales (Figure S2). We used the Haar 
wavelet to construct the filter bank. As described earlier, RTs 
were truncated to a uniform size of 128 samples and a six-level 
decomposition was done. The mean absolute value at level l  
(MAVl ) was then computed as:

	 	 (3)

where, d n
l is the nth detail coefficient at level l.

Minimal Redundancy-Maximal Relevance Computation
Given a set of features F = { fi, i = 1,…, M} existing in 

 and the target class variable c, feature selection tries to 
find a subset S ⊂ F with m features that optimally character-
izes c. Ideally we would like to minimize the generalization 
error of the classifier. The global solution, which might not be 
unique, could be found by exhaustively searching the feature 
space. This would require 2M − 1  operations. Unfortunately 
this becomes computationally infeasible even for moderately 
large values of M. Additionally, because the generalization 
error has to be estimated from data, a large number of searches 
increases the chances of overfitting, especially when the data 

SUPPLEMENTAL MATERIAL

size is small. The minimal redundancy-maximal relevance 
(mRMR) criterion is computed by subtracting the minimal re-
dundancy from maximum relevance and can be expressed as:

	 	 (4)

where I (X, Y )  is the mutual information (MI) between random 
variable X and Y and can be computed as:

	 	 (5)

Because the features used in our application are all con-
tinuous, computing this integration is not feasible. One way 
of handling the problem is to discretize the feature set. It is 
not clear as to what would be the best way to discretize the 
features for our application. We estimated MI using kernel 
density based estimation (see Bowman and Azzalini, 1997). 
Specifically, we used a normal kernel function evaluated at 
100 equally spaced points. The candidate feature set was con-
structed by using a first-order incremental search (i.e., feature 
that maximizes mRMR are picked one by one) that maximizes 
the mRMR criterion at each stage.

Support Vector Machine Implementation
A support vector machine detects a hyperplane between two 

classes that maximizes the margin. For data that is not linearly 
separable, a kernel function is applied to transform the data 
to a higher dimensional space where it is linear separable. We 
used a Radial Basis Function (RBF) kernel for our application. 
This resulted in two free parameters for the implementation: 
the regularization parameter C and the RBF kernel parameter 
γ. To find the best SVM parameters, a broad level grid search 
was employed (regularization parameter C = [20, 22,…, 210]  
and RBF kernel parameter γ = [20, 21,…, 25]) in step size of 2. 
As a pre-processing step, features were normalized to a unit 
sphere before being entered into the classifier.

	 	 (6)

Where  is the normalized feature vector and  is the  
norm. SVM was implemented using LIBSVM in Matlab.
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Figure S1—Estimated drift diffusion model (DDM) parameters for vulnerable and resistant subjects across the study period for Dataset 2. DDM parameters 
were significantly affected by time of day. Vulnerable subjects had lower mean diffusion drift (F1, 43 = 4.03, P < 0.001) and higher variability in non-decision 
time (F1, 43 = 27.5, P < 0.001) irrespective of time elapsed since waking. Across trial variability in drift and mean nondecision time showed interesting 
variations over the period of the day. The combined effect of all the DDM parameters was such that depending on the time of the day, the parameters could 
act in opposite directions. The dotted vertical line demarcates the usual bed time. Asterisk indicates statistically significant difference (P < 0.05).
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Figure S2—A four-level decomposition of signal using discrete wavelet transform. At each level, the resolution of the signal was halved.


