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SUMMARY
We used diffusion modelling to predict vulnerability to decline in psycho-
motor vigilance task (PVT) performance following a night of total sleep
deprivation (SD). A total of 135 healthy young adults (69 women,
age = 21.9 � 1.7 years) participated in several within-subject cross-over
design studies that incorporated the PVT. Participants were classified as
vulnerable (lower tertile) or non-vulnerable (upper tertile) according to their
change in lapse rate [lapse = reaction time (RT) ≥ 500 ms] between the
evening before (ESD) and the morning after SD. RT data were fitted using
Ratcliff’s diffusionmodel. Although both groups showed significant change
in RT during SD, there was no significant group difference in RT during the
ESDsession. In contrast, duringESD, themean diffusion drift of vulnerable
subjects was significantly lower than for non-vulnerable subjects. Mean
drift and non-decision times were both adversely affected by sleep
deprivation. Both mean drift and non-decision time showed significant
state 9 vulnerability interaction. Diffusion modelling appears to have
promise in predicting vulnerability to vigilance decline induced by a night of
total sleep deprivation.

INTRODUCTION

Degradation of vigilance is probably the most robust
alteration of neurobehavioural performance in healthy,
sleep-deprived young adults (Lim and Dinges, 2010). The
psychomotor vigilance task (PVT) (Dinges and Powell, 1985)
is a proven assay for evaluating vigilance. Its simplicity
makes it attractive for mathematical modelling of how
performance fluctuates according to the time of day, most
commonly using the two-process model or one of its variants
(Mallis et al., 2004; Rajdev et al., 2013). However, the
modelling of behaviour within trials has received considerably
less attention (Ratcliff and Van Dongen, 2011).
The drift diffusion model of perceptual decision-making, or

simply the diffusion model, allows decomposition of the
processes underlying simple reaction time (RT) tasks (Rat-
cliff, 2002). For example, decision and non-decision compo-
nents can be separated using this model. The non-decision
component refers to time spent encoding the sensory input
(pre-decision time), as well as time spent in executing the
decision (post-decision time). Decision-making itself is con-
ceived to be a noisy process involving the accumulation of
information over time (Ratcliff, 1978; Ratcliff and Murdock,

1976; Ratcliff and Rouder, 1998) that can be modelled
mathematically as a diffusion process. The diffusion model
has been used to explain behaviour in a growing number of
cognitive experiments (Heekeren et al., 2008; Krajbich et al.,
2012; Menz et al., 2012; Ratcliff et al., 2003; Tegenthoff
et al., 2005).
An attractive feature of diffusion modelling is that it can

predict the response time distribution under different contexts
(Ratcliff, 2002) and varying levels of noise (Ratcliff and
Tuerlinckx, 2002). The model has been tested by manipulat-
ing various facets of the decision process and then observing
the corresponding change in diffusion parameters (Voss
et al., 2004). Among the numerous studies using the PVT to
characterize performance in sleep-deprived people, only one
(Ratcliff and Van Dongen, 2011) used diffusion modelling to
explain behaviour. Diffusion parameters in the sleep deprived
(SD) condition were compared to those obtained in the non-
deprived condition. Although SD was found to negatively
affect several diffusion model parameters, only the effect on
the drift parameter was statistically significant.
In this study, we ascertained if the diffusion model could

differentiate persons according to their vulnerability to sleep
deprivation as measured by a decline in psychomotor
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vigilance. The present study was motivated by previous
research showing alterations in behavioural performance by
SD to be trait-like and reproducible across three experimental
sessions (Van Dongen et al., 2004a,b). The feasibility of
predicting vulnerability to SD using neuroimaging during the
well-rested state has been demonstrated by some previous
experiments (Chuah et al., 2006; Mu et al., 2005; Rocklage
et al., 2009) but not in others (Lim et al., 2007).
To fill these gaps in our understanding of behaviour

following SD, we posed two questions: (i) are the parameters
of the diffusion model affected differentially in vulnerable and
non-vulnerable participants? And (ii) can diffusion parameters
determined prior to SD predict performance following SD?

METHODS

Subjects

A total of 135 participants (69 females, mean age
21.9 � 1.7 years) from five different functional magnetic
resonance imaging studies (fMRI) (Chee and Chuah, 2007;
Chee et al., 2010; Chuah and Chee, 2008; Chuah et al.,
2010; Venkatraman et al., 2007) on sleep deprivation con-
tributed behavioural data to this report. The five studies
shared common recruitment criteria and protocol for sleep
deprivation. Volunteers had to: (i) be right-handed, (ii) be
aged between 18 and 35 years, (iii) have habitual good
sleeping habits (6.5–9 h of sleep every day), (iv) have no
history of sleep or psychiatric or neurological disorders and
(v) have no history of severe medical illness. All participants
indicated that they did not smoke or consume any medica-
tions, stimulants, caffeine or alcohol for at least 24 h prior to
the sessions. Informed consent was obtained from all
participants in accordance with study protocols approved by
the National University of Singapore Institutional Review
Board.
Participants visited the laboratory three times. They first

attendedabriefingsession, duringwhich theywere informedof
the study protocol and requirements and practised the study
task. At the end of this session, each participant was given a
wrist actigraph to wear throughout the study. The first exper-
imental session took place approximately a week later. The
order of the two experimental sessions (rested wakefulness
and sleep deprivation) was counterbalanced across all the
participants and separated by 1 week. This was to minimize
the possibility of residual effects of sleep deprivation on
cognition for those participants whose sleep-deprivation ses-
sion had preceded their rested–wakefulness session (Van
Dongen et al., 2003). Sleep duration was verified by acti-
graphic data and data from non-compliant subjects were not
analysed.

Experimental details

In the rested wakefulness (RW) session, participants arrived
at the laboratory on the scheduled date at 07:30 hours. The

PVT was administered at 08:00 hours. In the sleep depriva-
tion sessions subjects arrived at the laboratory on the
scheduled date at 19:30 hours. Participants underwent a
night of SD under supervision of a research assistant. The
PVT (Dinges and Powell, 1985) was administered every hour
from 20:00 to 5:00 hours the next morning (10 test periods).
For this report, only data from the first two epochs at 20:00
and 21:00 hours during the wake maintenance zone of the
SD session and two test periods at 4:00 and 5:00 hours
following a night of total sleep deprivation were analysed. We
did not compare RW with SD directly, because only one ‘RW’

data point was available. The first two evening sessions were
labelled ‘evening before sleep deprivation’ (ESD) and the last
two sessions were labelled ‘sleep deprivation’ (SD). Partic-
ipants also rated their subjective sleepiness on the nine-point
Karolinska Sleepiness Scale after each PVT test. Throughout
the night, they were allowed to engage in non-strenuous
activities such as reading, watching videos and conversing.
When performing the PVT, participants were instructed to
respond as quickly as possible. RTs <150 ms were regarded
as false alarms, and were excluded from analysis. All PVTs
administered were of 10-min duration.

Diffusion parameters estimation

For each participant, the single boundary drift diffusion model
was applied to two sessions of RT data in each state. The
estimated parameters for each group in each state were then
aggregated for further statistical analysis. The model divided
RT into two components: decision time and non-decision
time, with the latter consisting of sensory encoding (the pre-
decision time) and decision execution (the post-decision
time); see Fig. 1a. Non-decision time was assumed to vary
from trial to trial according to a uniform distribution with mean
Ter and width St. Decision time was modelled using a single
boundary diffusion process with a drift parameter. Evidence
was assumed to accumulate from the starting point until the
boundary a was reached. The drift parameter was also
allowed to vary across trials according to a normal distribution
with mean n and standard deviation g (Fig. 1b). This differs
from most perceptual decision-making models that involve
two choices, in that these have used a two-boundary model.
Due to the difficulty in uniquely identifying model parameters
in single boundary tasks (Ratcliff and Van Dongen, 2011), we
followed Ratcliff’s suggestion to use uniquely identifiable
parameter ratios (na and

g
a). This resulted in a model with four

parameters: H = n/a, g/a, Ter, St. In other words, the drift
parameters of one subject cannot be compared with another
without first normalizing their estimated boundary values. For
the sake of simplicity, from this point onwards we will use drift
and drift ratio interchangeably. When comparing the drift
parameters across group, it is implicit that they were
normalized by the estimated boundary parameter.
To estimate the model parameters, we followed the

strategy described in detail by Ratcliff and Van Dongen
(2011) (Fig. 2). The RT distribution was simulated using a

ª 2014 European Sleep Research Society

2 A. Patanaik et al.



High dri

Mean dri

Low dri

(a)

(b)

Figure 1. Schematic illustration of the one choice Ratcliff diffusion model. (a) Reaction time (RT) can be divided into two distinct components—
decision time and non-decision time. Non-decision time may be broken down into pre-decision time, referring to stimulus encoding time and
post-decision time, which corresponds to response-output time. (b) Non-decision time was modelled as a uniform distribution with mean Ter and
range St. Decision time was modelled as a one-boundary diffusion process with drift n, which captures the mean rate of information uptake and
is assumed to vary across trials with a standard deviation g. The decision process ends when the diffusion process reaches the boundary
located at a. Note that while drift is symmetrically distributed about n, drift angle is not.
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Figure 2. Parameter estimation process. (i) Initial values for the parameter H were estimated from the data using a maximum likelihood
estimate (MLE). (ii) 20 000 samples of reaction time (RT) were generated and compared with the actual observed RT using a v2 test for
goodness-of-fit. This process was repeated and the fit successively improved using a Nelder–Mead simplex algorithm until there was no further
improvement (tolerance criteria was set at 0.5).
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combination of random walk approximation (Tuerlinckx et al.,
2001) and shifted inverse Gaussian distributions (Michael
et al., 1976). This was compared to experimental RT data
using the v2 statistic for goodness-of-fit. We started with an
initial estimate for the parameters using a maximum likeli-
hood-based estimator and utilized an iterative algorithm
based on simplex minimization routine (Nelder and Mead,
1965) to successively improve the model fit (see Patanaik
et al., 2014 for details).
The Ratcliff model leaves several free parameters that can

be altered depending on the data. For the simulation process,
20 000 RTs per distribution were obtained. We used a step
size of 0.1 ms for the random walk approximation and
stepped through 0.05, 0.1, . . ., 0.95 quantiles of the RT
distribution to obtain model fits. These quantile RTs were
used to find the proportion of responses in the model RT
distribution lying between quantiles. To derive expected
values (E), the proportion of responses was multiplied by the
number of observations. The observed values, (O), were
multiplied by 0.05 and the number of observations. A v2

statistic was then computed as ∑ (O � E)2/E. Our estimator
was validated using two sessions of simulated 10-min PVT
data obtained from 100 subjects. We found the estimates to
be unbiased.

Statistical analyses

Group differences were evaluated using an independent-
samples t-test. To assess the interaction effect of state (ESD
or SD) and group (vulnerable or non-vulnerable) on relevant
diffusion parameters, a 2 9 2 factorial design analysis of
variance (ANOVA) was employed. Alpha was set at 0.05. To
assess the discriminative power of the diffusion parameters a
binary logistic regression analysis was performed to classify
subjects into vulnerable and non-vulnerable groups using
baseline data. We used vulnerability as a dependent variable
and diffusion model parameters measured in ESD as
independent variables. We also tried introducing baseline
standard RT metrics to the set of independent variables,

anticipating any increase in accuracy. In the set of standard
RT metrics, we also included the slowest 10% RS. The
slowest 10% RS is known to be correlated strongly with drift
parameter based on simulations (results not shown). The
independent variables were introduced one at a time
sequentially, using the forward selection method, until the
addition of an extra variable resulted in no statistically
significant increase in accuracy. A receiver operating char-
acteristic (ROC) curve was obtained by varying the threshold
of the logistic function. All analyses were conducted using
SPSS version 20 (IBM, Chicago, IL, USA) and Matlab 2013b
(The MathWorks, Inc., Natick, MA, USA).

RESULTS

Identification of vulnerable and non-vulnerable subjects

Based on the change in the number of lapses between SD and
ESD ðdl ¼ lSD � lESDÞ, subjects were identified as non-vulner-
able if they belonged to the lower tertile and as vulnerable
subjects if they belonged to the upper tertile. A lapse was
defined as a trial with RT ≥ 500 ms. Non-vulnerable subjects
(n = 43) had dl < 4 and vulnerable subjects (n = 45) had
d > 12.
The two groups were similar in age [mean age for non-

vulnerable group = 22.0 years, standard deviation = 1.97
years; mean age for vulnerable group = 22.0 years, standard
deviation = 1.68 years; t86 = 0.05, not significant (NS)] and
gender (18 females in non-vulnerable group, 22 females in
vulnerable group; v21 = 0.43, NS). As expected, across the
entire group, sleep deprivation (SD) elicited significant
changes in mean and median RT, the reciprocal of RT and
lapses compared to the evening before sleep deprivation
(ESD) state (Table 1). SD had a significant effect on diffusion
model parameters (drift, non-decision time) other than within-
trial variability in drift. Importantly, during ESD, there was no
significant difference in any of the traditional RT metrics
between the two groups (smallest P = 0.08, for mean RT;
Fig. 3).

Table 1 Standard reaction time and diffusion parameter statistics of study participants

ESD (n = 135) SD (n = 135) P-value

Reaction time (RT) statistics
Mean RT, ms 266 � 34 442 � 432 <0.001
Mean response speed, 1/s 4.0 � 0.4 3.3 � 0.6 <0.001
Median RT, ms 249 � 26 312 � 138 <0.001
Total lapses 2.6 � 3.7 15.8 � 17.9 <0.001

Diffusion parameter statistics
Normalized drift n

a 10.9 � 2.7 7.7 � 2.7 <0.001
Across trial standard deviation in drift g

a 2.8 � 1.7 2.5 � 1.6 0.13
Mean non-decision time Ter, ms 157 � 17 165 � 22 <0.001
Range of non-decision time St, ms 47 � 16 56 � 22 <0.001

Overall v2 fit for evening before sleep deprivation (ESD) state was 16.8 � 7.2 and sleep deprivation (SD) state was 17.7 � 9.7. Critical value
for v2, df = 14 is 26.1.
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Effects of state and group on diffusion parameters

Mean diffusion drift

There was a significant main effect of state on mean
diffusion drift n (F1,172 = 69.4; P < 0.001). Averaged across
the two tertiles, diffusion drift was significantly lower in the
SD state compared to ESD state. There was a significant
main effect of group on drift, with vulnerable participants
having a lower mean diffusion drift n than non-vulnerable
participants, F1,172 = 45.1; P < 0.001. Vulnerable subjects
had significantly lower diffusion drift in both ESD (t86 = 2.44;
P < 0.05) and SD (t86 = 7.65, P < 0.001) compared to non-
vulnerable subjects.
The interaction of state and group was significant,

(F1,172 = 8.33 P < 0.005) (Fig. 4). Thus, while both
groups showed significant declines in mean diffusion drift
following sleep deprivation (vulnerable t88 = 9.02,
P < 0.001; non-vulnerable: t84 = 3.3, P < 0.005), decline
in drift rate was greater in vulnerable than in non-vulner-
able subjects.

Mean non-decision time

There was a main effect of state on mean non-decision time
(Ter) (F1,172 = 7.47; P < 0.01), with Ter being faster in ESD
than during SD. This was modulated by group [group 9 state
interaction (F1,172 = 6.1; P < 0.05)], such that the decline in
non-decision times was also significant in vulnerable subjects
(t88 = �3.54; P < 0.001, but not in non-vulnerable subjects
(t84 = 0.11, P = 0.91). There was no main effect of group on
Ter, F1,172 = 1.45; P = 0.23.

Predicting vulnerability from baseline data

We observed a classification accuracy of 69.3% at a
sensitivity of 65.1% and specificity of 73.3% using baseline
normalized diffusion drift (n/a), diffusion signal-to-noise ratio
(ng) and mean non-decision time (Ter). The baseline slowest
10% RS was observed to be highly correlated (r = 0.77,
P � 0.001) with baseline mean diffusion drift. Despite this,
no improvement in classification was observed by the
addition of any traditional RT measures. The ROC curve is
presented in Fig. 5. The area under the curve was 0.74.

DISCUSSION

Effect of sleep deprivation on diffusion parameters

Our results replicate and extend the previous finding that
single boundary diffusion drift ratio is reduced with sleep
deprivation on the standard PVT. Diffusion drift has also been
found to be reduced on a numerosity discrimination task
(Ratcliff and Van Dongen, 2009). However, these sleep
deprivation-related changes in diffusion drift may be context-
and/or task-dependent. Menz et al. (2012), for example,
observed that drift reduced with a decision task in SD for
easy but not for difficult decisions. Additionally, SD appears
to affect non-decision diffusion parameters (mean and
variance of non-decision times). The latter finding is possibly
a result of the greater power of the present study (n = 135
versus n = 19 for one of the original studies) and is
consistent with the notion mooted by those authors that SD
can affect multiple cognitive processes (Ratcliff and Van
Dongen, 2009).

Figure 3. Performance metrics measured
on the evening before sleep deprivation
(ESD). Metrics include mean reaction time
(RT), mean response speed (RS = 1/RT),
total lapses and median RT for subjects
vulnerable (vul) and non-vulnerable (nvul) to
sleep deprivation. Although the non-
vulnerable group performed better than the
vulnerable group in the ESD state, none of
the RT metrics were statistically significantly
different between the two groups (smallest
P = 0.08 for mean RT). Error bars represent
one standard error of the mean.
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Difference in diffusion parameters between vulnerable
and non-vulnerable subjects

The most interesting finding of the present work is that the
drift parameter on the evening before sleep deprivation
predicted greater vulnerability to SD, something that was not
anticipated by merely observing PVT performance. The latter
may have arisen because, in the ESD state, diffusion drift
rate and non-decision time were affected in opposite direc-
tions—vulnerable subjects had longer decision times but
shorter non-decision times.
In the ESD state, when the diffusion drift was high, the

mean drift and non-decision parameters traded-off without
affecting overall observed performance. The effects of
varying levels of mean diffusion drift and mean non-decision
time on median RT can be modelled (Fig. 6). The figure was
generated by simulating 30-min PVTs for each pair of
diffusion-drift and non-decision time parameters while hold-
ing constant variability parameters. The modelled RT of two
representative subjects, one vulnerable and one non-
vulnerable to SD, are shown overlaid on the plot. During
ESD the mean diffusion drift and non-decision parameters of
these participants differed even though they had the same

median RT. Modelling showed that as the diffusion drift was
reduced, median RT became dominated by the drift param-
eter and the trade-off between the parameters became less
apparent.

Interaction effect of state and group on diffusion
parameters

Both mean diffusion drift and mean non-decision time showed
statistically significant group 9 state interaction. The results
suggest that in terms of decision time (i.e. drift parameters)
subjects with better performance in ESD state were less
affected after sleep deprivation. Furthermore, those with faster
decision time performance but slower non-decision times in
the ESD state were also less affected by sleep deprivation.
The observation that all diffusion parameters were less

affected by SD in non-vulnerable participants suggests that
they may have greater cognitive reserve (Stern, 2002)
compared to vulnerable subjects (Bell-McGinty et al., 2004;
Chuah et al., 2006). This concept has been applied primarily
to cognitive ageing, but has also been shown to be relevant in
the context of sleep deprivation (Chee et al., 2006; Mu et al.,
2005).

Figure 4. Mean estimated diffusion parameters for vulnerable (vul) and non-vulnerable (nvul) groups on the evening before sleep deprivation
(ESD) and after sleep deprivation (SD). In ESD, vulnerable subjects showed significantly lower (P < 0.05) mean diffusion drift compared to non-
vulnerable subjects. In addition, following SD, vulnerable subjects also displayed significantly lower drift (P < 0.001) and significantly higher
non-decision time (P < 0.01). Both mean diffusion drift and mean non-decision time showed statistically significant group 9 state interaction
(P < 0.005 and P < 0.05, respectively). Error bars represent one standard error of the mean.
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Possible neurocognitive accompaniments of reduced
diffusion drift

Although a slower drift rate speaks to slower accumulation of
evidence on which to base action, the present experiments
and analyses were not designed to examine the possible
contribution of this mechanism. An experiment that examined
the rate of processing limitations in the sleep deprived state
was one where sleep deprivation was accompanied by a
leftward shift in frequency response profile of fMRI signal in
higher visual cortex (Kong et al., 2014). This finding indicates
that the maximal rate at which pictures are processed in
higher (but not primary) visual cortex is lowered by sleep
deprivation.
Sleep deprivation has been shown consistently to result in

reduced recruitment of parieto-frontal and visual extrastriate
brain regions during the performance of visual attention tasks
(Chee et al., 2010; Lim et al., 2010; Tomasi et al., 2009) and
even in the preparatory phase (Chee et al., 2011). The degree
of reduction of activation generally corresponds to impaired
accuracy in tasks, but only in two studies has greater baseline
activation been found to mark individuals relatively more
resistant to the negative effects of sleep deprivation (Chuah
et al., 2006; Mu et al., 2005). As such, the neural correlates
of predictors of vulnerability to sleep deprivation remain to be
characterized further.

Predictive value of diffusion model parameters

Even though there were statistically significant differences
between the vulnerable and non-vulnerable group in the
baseline ESD condition, it remains to be seen if the diffusion
parameters areuseful in predicting vulnerability at an individual
level. Estimated diffusion parameters are noisy at an individual
level, especially with limited data. Despite this, logistic regres-
sion showed that diffusion parameters have reasonable
discriminative power. The addition of traditional RT metrics to
the classifier did not improve classification accuracy. Future
work should consider using other easily derived physiological
measures (for instance, heart rate variability; Chua et al.,
2012), in combination with complex non-linear classifiers, to
improve phenotypic characterization of vulnerability to
psychomotor vigilance as a result of sleep deprivation. Another
way to improve classification accuracy could be to improve the
estimates of diffusion model parameters by aggregating more
data from longer periods of PVT at baseline, keeping in mind
that longer non-standard PVTs are affected strongly by time on
task effects, which might negatively affect classification.

Strengths and limitations

One of the strengths of the present study is its large sample
size. We also used an established estimator for model
parameter estimation that was validated on simulated data.
While having some utility in operational settings (Mu et al.,
2005), the comparison between ESD and SD is less ideal

Figure 6. Expected median reaction time (RT) for different
combinations of mean normalized diffusion drift and mean non-
decision time generated by simulating 30 min of psychomotor
vigilance task (PVT). The variability parameters were fixed at the
group average values ðg=a ¼ 2:62;St ¼ 52msÞ. Response times (as
measured by median RT) of two representative subjects, one
vulnerable (vul) and the other not vulnerable (nvul) to SD were
overlaid. Both subjects had the same median RT (=256 ms) in the
baseline evening before sleep deprivation (ESD) condition.
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Figure 5. Receiver operating characteristic curve obtained by
varying threshold of a logistic regression-based classifier. Diffusion
parameters estimated on the evening before sleep deprivation (ESD)
state were used to predict the vulnerability of the subjects to sleep
deprivation. The best operating point was found at a true positive
(TP) rate of 65.1% and false positive (FP) rate of 30.7%. The area
under the curve was 0.74.
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than a direct comparison to a well-rested period recorded in
the morning hours after waking. As a result of the test
protocol used in the laboratory, only one such morning
measurement was obtained and was therefore compared
less readily to the SD data [which were averaged across two
time-points (Fig. S1)].
It should be remembered that while vigilance decrements

are an important and robust measure of performance decline
in sleep-deprived persons, other cognitive domains may not
be similarly affected (Van Dongen et al., 2004a). Another
potential limitation is that we were unable to uniquely identify
all the model parameters of the Ratcliff model. This was
because a large drift with a distant boundary is operationally
the same as a small drift with a proximate boundary. The
model has no way of determining the exact drift and
boundary parameters separately; only drift ratios (n/a, g/a)
can be estimated uniquely.
We use the term ‘sleep deprivation’ to refer to the

interaction between homeostatic and circadian processes
instead of artificially separating the relative contributions of
the two processes. In the real world that the present work
speaks to, it remains that increased risk of vehicular
accidents occurring at the nadir of the circadian cycle after
a night of sustained wakefulness correlates with slowing of
PVT performance, as predicted by the diffusion model
parameters in ESD.

CONCLUSION

Vulnerable subjects have a lower mean diffusion drift but
shorter mean non-decision time compared to the non-
vulnerable group in the evening before sleep deprivation.
Possibly as a consequence of possessing greater cognitive
reserve, non-vulnerable subjects were less affected by SD on
both decision and non-decision processes. Diffusion drift can
be used to estimate vulnerability to SD prior to experimental
manipulation.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online
version of this article:

Figure S1. Mean reaction time in ms across sessions.
Error bars represent one standard error of the mean.
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