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Local voxel patterns of fMRI signals contain specific information about cognitive processes ranging from basic
sensory processing to high level decision making. These patterns can be detected using multivariate pattern
classification, and localization of these patterns can be achieved with searchlight methods in which the
information content of spherical sub-volumes of the fMRI signal is assessed. The only assumption made by
this approach is that the patterns are spatially local. We present a cortical surface-based searchlight approach
to pattern localization. Voxels are grouped according to distance along the cortical surface—the intrinsic
metric of cortical anatomy—rather than Euclidean distance as in volumetric searchlights. Using a paradigm in
which the category of visually presented objects is decoded, we compare the surface-based method to a
standard volumetric searchlight technique. Group analyses of accuracy maps produced by both methods
show similar distributions of informative regions. The surface-based method achieves a finer spatial
specificity with comparable peak values of significance, while the volumetric method appears to be more
sensitive to small informative regions and might also capture information not located directly within the
gray matter. Furthermore, our findings show that a surface centered in the middle of the gray matter
contains more information than to the white–gray boundary or the pial surface.
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Introduction

Cortical processing relies on computations within local and global
networks of neurons. Functional magnetic resonance imaging (fMRI)
indirectly measures such neural activations via the blood oxygen level
dependent (BOLD) signal (Logothetis, 2008; Logothetis and Wandell,
2004). It is common practice to detect ‘mass univariate’ changes in the
BOLD signal within rather large regions (on the order of centimeters).
However, in recent years it has been shown that the local, distributed
fine-scale patterns of voxel activations (on the order of millimeters)
contain information beyond the univariate standard analysis. Multi-
voxel pattern analysis (MVPA) has been successfully used in many
neuroimaging studies (Haynes and Rees, 2006; Norman et al., 2006).
MVPA allows assessing the information in a set of voxels considered
jointly. The sensitivity and statistical stability offered by MVPA
methods have been testified by numerous studies in various topics
(Cox and Savoy, 2003; Eger et al., 2008; Formisano et al., 2008; Haxby
et al., 2001; Haynes et al., 2005; Haynes and Rees, 2005, 2006;
Kamitani and Tong, 2005; Knops et al., 2009; Macevoy and Epstein,
2009; Williams et al., 2008).

To further our understanding of neuronal information processing,
we must investigate not only the extent to which distributed patterns
in BOLD signal inform us about experimental conditions but also
where in the brain such information is processed. A promising
approach to pattern localization is to use multivariate searchlights to
construct information-based maps of the brain (Haynes et al., 2007;
Kriegeskorte et al., 2006). In this method, a 3-dimensional (3D)
spherical volume is defined around each voxel and all voxels situated
within the sphere are jointly analyzed with MVPA to extract
information about some experimental condition or cognitive state of
the subject. This volumetric searchlight method provides a spatially
unbiased estimate of the information contained in local patterns of
activity around every voxel location in the volume and as such can be
fashioned as a tool to guide detailed investigation into local patterns.
The unbiased estimation of information produced by the searchlight
method distinguishes it from other biased approaches that use
regions of interest (ROIs) (Haynes and Rees, 2006; Pereira et al.,
2009). The efficacy of multivariate searchlight methods has been
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successfully demonstrated in many recent studies (Bode and Haynes,
2009; Haynes et al., 2007; Kriegeskorte et al., 2006; Soon et al., 2008).

The use of the spherical searchlight as a technique for evaluating
information contained in local patterns rests on the assumption that
the patterns are distributed volumetrically in the brain. However,
cortical neurons are located within the two highly convoluted sheets
of gray matter varying in thickness from 1 to 4.5 mm (Fischl and Dale,
2000). In fact, most of the signals measured with fMRI reside within
the graymatter (Jin and Kim, 2008). Its thickness is approximately the
same as the standard side length of the voxels typically measured in
fMRI. Thus, a 3D-spherical searchlight might sample information from
cortical regions that are close in Euclidian space, but relatively far
apart with respect to the distance induced by geodesics on the cortical
surface. Searchlights located near the longitudinal fissure might even
sample information from both hemispheres. This implies that the
volumetric searchlight technique may include voxels from different
anatomical structures such as regions across spatially non-contiguous
cortices. This is likely to deteriorate the spatial specificity of the
results. Moreover, the inclusion of many non-gray matter voxels in a
volumetric searchlight is likely to increase the noise in the fMRI
pattern. Due to its limited temporal resolution, statistical inference
about fMRI data is made based on a relatively small number of
samples. Thus, any increase in noise reduces the power of MVPA
techniques.

Motivated by the problem of pattern localization and preservation
of structural topology, we propose the use of 2-dimensional (2D), i.e.
surface-based, searchlight methods: 2-dimensional disks with a given
radius are centered at and extended from each point on the cortical
surface. The disks are deformed to match the cortical curvature,
preserving the distance metric induced by the surface geodesic. The
set of voxels intersecting each disk are then analyzed jointly by MVPA
techniques. This extraction of voxels from the 2-dimensional cortical
surface assures that voxels included in each such surface-based
searchlight are close to each other with respect to anatomical
structure. In addition, the number of non-gray matter voxels in each
searchlight is reduced. We illustrate this method on an fMRI data set
in which we decode the category of visually presented rotating
objects. Compared to a volumetric searchlight, the surface-based
searchlight has a similar statistical reliability, but it improves the
spatial specificity of multivariate analyses.

Methods and materials

We describe the experimental procedures followed by a detailed
account of the surface-based and volumetric searchlight approaches.

Experimental design and visual stimulation

Twelve healthy subjects (seven females, five males, mean age
25.2) participated in the study and gave written informed consent to
the test procedure. All subjects were right-handed and had normal or
corrected to normal visual acuity. The experiment was approved by
the local ethics committee and was conducted according to the
Declaration of Helsinki.

Each experimental run consisted of 60 trials. In each trial, a
rotating object was dynamically presented (60 frames per second) at
the center of a screen, using a Python script with the Python OpenGL®
binding (http://pyopengl.sourceforge.net/). The objects were scaled
to have the same length along their longest axis, and subtended a view
angle of 7.68°. Each trial lasted for 4 s, followed by a fixation-only
period of 4, 6 or 8 s (randomized). Objects rotated around a randomly
changing axis at four different angular velocities (0, 0.5, 1.5,
4.5 cycles/s), where angular velocity 0 corresponded to a static object
presented in a randomly chosen view (Fig. 1A). Each of the 12
experimental conditions (3 different objects in 4 rotating velocities)
was presented 5 times per run. In order to minimize potential effects
Please cite this article as: Chen, Y., et al., Cortical surface-based
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of sequencing that might affect the later analysis, the order of trials
was randomized in every run independently for each subject.
Throughout the whole experiment subjects were engaged in a Landolt
C fixation task (Fig. 1B). The fixation stimulus subtended a view angle
of 0.154° and randomly changed its opening side (left or right) every
2 s. Subjects were asked to indicate the sides of the opening by a
button press with the corresponding hand. Example images of the
three objects used in the experiment are shown in Fig. 1C.

Data acquisition and preprocessing

Functional MRI scans (gradient-echo EPI) were acquired on a
Bruker 3 T (MedSpec 30/100) scanner with standard head coil. The
fMRI volumes contained 30 axial slices to completely cover the
occipital and temporal lobe for every subject (TR=2000 ms,
TE=30 ms, in plane resolution 3×3 mm, slice thickness 2 mm with
1 mm gap). Five runs of 302 volumes were acquired. The first two
images of each run were discarded to allow for magnetic saturation
effects. In addition, for every subject, a sagittal T1-weighted
anatomical scan was acquired in a separate session on a different
scanner (3T Siemens Trio MR System, TR=1300 ms, TE=3.93 ms,
FOV=256×240 mm2, slab thickness 192 mm). The anatomical
images had a resolution of 1×1×1 mm3 and were used for cortical
surface reconstruction.

All functional imageswere corrected for head-motion and realigned to
the first functional image for each subject (SPM2, Wellcome Department
of Imaging Neuroscience, Institute of Neurology, London, UK). After the
coregistration, a standard hemodynamic response function model was
fitted to the data in order to estimate the statistical parameters (beta
values in SPM) for each of the 12 experimental conditions (3 objects×4
velocities).

Construction of cortical surface-based searchlight

The construction of the 2-dimensional surface-based searchlight
involved several steps which are described in detail below. First, the
cortical surface was extracted. Then, we defined disks with a fixed
radius around each point on the surface deformed to respect the
surface curvature. Finally, all voxels of the functional images that
contained some part of each disk were assigned to the surface-based
searchlight corresponding to that disk's centre. Fig. 2 illustrates the
searchlight extraction mechanism.

Circular searchlights on the cortical surface

High resolution (1×1×1 mm) T1-weighted whole brain images
were acquired for every subject. Meshes of the white matter and pial
surfaces of the cortex were reconstructed individually for each subject
using the Freesurfer software package (Dale et al., 1999; Fischl et al.,
1999a). A third surface in themiddle of the graymatter was defined as
the surface lying equidistant from both the pial and white–gray
boundary surfaces. This ‘graymid’ surface was generated by inflating
the white matter surface by 50% towards the pial surface for each
subject, also using Freesurfer.

The surfaces generated by Freesurfer are defined as discrete
meshes and can be represented as graphswith weights corresponding
to the lengths of the edges between vertices. Based on this weighted
representation, pair-wise geodesic distances between vertices of the
mesh can be approximated with the length of the shortest paths on
the graph by using a modified Dijkstra algorithm (Dijkstra, 1959;
Fischl et al., 1999a). For a given radius r (r=9mm in this study), we
constructed disks around each vertex v of the surface mesh by
including all vertices u such that the geodesic distance between u and
v was less than r (Fig. 2A). This procedure defined a searchlight
structure for each vertex as the set of neighboring vertices within the
radial distance. Note that neighborhood is defined with the intrinsic
searchlight decoding, NeuroImage (2010), doi:10.1016/j.neuro-
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Fig. 1. Experimental design. (A) Rotating objects (trumpet, chair and sailing boat) were dynamically presented for 4 s (at 60 frames/s). The axis of rotation changed randomly during
the trial. Between individual presentations of objects (trials) a fixation only period of random length (4, 6 or 8 s) was introduced. (B) During the whole experiment (trial duration
and interleaved fixation periods) subjects were engaged in a fixation task. Small black squares illustrate the central part of the screen. Images are highly enlarged compared to (A).
The size of one fixation square corresponds to 0.154° of visual angle. (C) Example images of the three objects: trumpet, chair and sailing boat.
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metric of the surface, therefore respects the cortical anatomical
structure.
Surface searchlight in functional image space and extraction of
activity patterns

To use the surface-based searchlight structure for pattern extraction
from functional images the sets of vertices were projected into the
functional image space.Wefirst calculated the transformationparameters
by coregistering (SPM2) the functional images to the T1-weighted image
which was used for surface reconstruction. The functional image voxels
belonging to the surface searchlight were extracted by assigning to each
vertex its nearest neighbor voxel within three-dimensional space
(Euclidian distance). The list of voxels obtained in this way constitutes
the set of features for a single surface-based searchlight (see Fig. 2B andC).
By assigning nearest neighbor voxels to vertices, we avoided any
smoothing or interpolation between neighboring voxels, which might
have affected the patterns and thereby also might have affected
classification accuracies.

Because the surface meshes created by Freesurfer have a much
finer spatial resolution than the functional images, several vertices
within the searchlight corresponded to the same voxel. To avoid
redundant features in the classification analysis, we disallowed
multiple occurrences of the same voxel within a single searchlight.

We constructed the searchlight structure on three different
surfaces, the white–gray boundary (W), graymid (G) and pial (P),
Please cite this article as: Chen, Y., et al., Cortical surface-based
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all of which are inflations of the original white–gray boundary surface.
Since tiny structures on the original white matter surface often induce
errors in the estimation of geodesic distance, a smoothed version of
the white–gray boundary computed with Freesurfer (Fischl et al.,
1999a) was used instead. For each of the surfaces we included all
voxels within a certain distance from the center vertex in the
corresponding searchlight. Note that now distance was calculated on
the respective surface and the 3-D coordinates of that surface were
used to find the corresponding voxels. Moreover as the original
surface was inflated to form these three surfaces, there is a one-to-one
correspondence between the vertices of the three surfaces. We thus
were able to combine the searchlights of one vertex of all or any
combination of the three extracted surfaces and created searchlights
of contiguous surfaces (the set union of voxel indices) to obtain the
following combinations of 2D-surface searchlights: W–G, G–P, and
W–G–P. These searchlights from combined surfaces can be viewed as
3-D cylindrical searchlights.
Multivariate pattern analysis

Once the searchlight structure for every vertex was constructed
and mapped to functional image space, each vertex v was associated
with a list of all voxels that contained at least one vertex that belonged
to the searchlight centered at v. From this list the set of features
associated with a given vertex was extracted from the parameter
estimates for the three different objects. For every center vertex we
searchlight decoding, NeuroImage (2010), doi:10.1016/j.neuro-
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Fig. 2. Construction of surface-based searchlights. (A) Example seed vertex (red dot) and corresponding geodesic disk (faces in yellow and vertices in green) around it
(radiusb9 mm). (B) Voxels (translucent green cubes) in functional image space that are included in the searchlight structure defined by the geodesic disc. (C) Magnified view of the
surface-based searchlight structure and the voxels defined by it. Note that the voxels preserve the surface structure, even though the voxels of the functional images have a coarser
resolution (3×3×3 mm3) than the average distance between vertices (b1 mm). (D) The voxel cluster (translucent blue cubes) defined by the volumetric searchlight structure at the
same location and with the same radius is overlaid on the surface-based searchlight structure. Note that the surface-based searchlight voxels (green) constitute a subset of the
volumetric searchlight (blue).
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used a linear support vector machine (SVM, LIBSVM implementation,
http://www.csie.ntu.edu.tw/~cjlin/libsvm) to perform a 5 fold cross-
validated classification over the 5 functional runs (Pereira et al.,
2009). In each of the cross-validating folds, 12 samples (4 from each
category) were used as training set and 3 samples (one from each
category) served as the testing set. The cross-validation procedure
yielded an average accuracy map for each individual subject,
reflecting the distribution of decodable information about visual
object category on the cortical surface. Note that to avoid potential
confounds from sequencing effects, individual trials were randomized
independently for each run and subject, and hence the parameter
estimates should be unbiased.

For the purpose of this paper, we restricted the analysis to a single
angular velocity (0.5 cycles/s). This angular velocity was slow
enough to give the subjective impression of a smoothly rotating
object. Faster speeds were omitted because they result in flickering
effects, which may have influenced visual processing. The static
condition is prone to leading to significant decoding in early visual
areas, which are not related to objects but to the spatial arrangement
of contrast edges. A detailed account of the influence of different
rotation speeds goes beyond the scope of this paper and will be
published separately.
Volumetric searchlight method

In order to assess the differences between a volumetric and a
surface-based searchlight approach, we also performed a standard
volumetric searchlight analysis (see Bode and Haynes, 2009, for a
detailed description). We extracted around each voxel all voxels
within the same radius as for the surface-based method (9 mm).
Fig. 2D shows a comparison between a surface-based and a volumetric
searchlight. We then proceeded with the identical classification
procedure as for the surface-based decoding. Again, a 5 fold cross-
validation with linear SVM was used to estimate the decoding
accuracy for each voxel. The resulting accuracies were then assigned
to the nearest-neighbor vertices on the surface mesh providing an
accuracy map of volumetric searchlight decoding that we could
directly compare to the surface-based decoding.

Group analysis

To assess the statistical validity of the decoding among visual
categories on the group level we used Freesurfer to construct the
average white matter and pial surfaces together with an average
anatomical volume for thewhole group (Fischl et al., 1999b). Based on
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Fig. 3. Decoding object categories. Distributions of p-values from a group statistic
comparing the decoding accuracy against chance level are shown on the averaged
cortical surface. Colored regions indicate cortical areas where the category of the
rotating objects can be decoded from local patterns significantly across the group of
subjects. Top: Results obtained with the surface-based searchlight method defined on
the graymid surface. Bottom: Results obtained with the standard volumetric method
projected onto the surface. Note that the scaling of p-values is identical between the
two figures. Thus same colors indicate the same statistical significance in both
subfigures. Green arrows indicate the location of the Collateral Sulcus (CoS).
Supplementary Fig. S1 depicts the results on the flattened cortical surface.
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the cortical curvature, we then aligned the accuracy map for every
individual subject onto the average surface and smoothed it with a
Gaussian kernel (FWHM=9 mm). Finally, a t-test was used to
compare the accuracy maps against chance level for every vertex.
We report the resultant significance as p-value maps.

In addition to the t-test, permutation tests for classification
analysis (Golland and Fischl, 2003) were conducted for all subjects.
One thousand random permutations of class labeling, including the
true one from the experiment, were used for each subject at every
location, where locations are either vertices (2D) or voxels (3D). For
each permuted labeling, we computed the accuracy with the same 5-
fold cross-validation procedure as described above. After mapping the
accuracies from the individual subjects to the average subject cortical
surface, we obtained 1000 randomly sampled accuracies representing
the unknown accuracy distribution for each subject at each vertex of
the average cortical surface.

Based on these random samples of single subjects we estimated the
empirical significance for the group mean accuracy of the 12 subjects.
The groupmean accuracy is a statistic based on a random sample of size
N taken independently from theN subjects (N=12). The significance of
the true mean resulting from the correct labeling in all subjects is thus
the probability that a random sample has a mean value greater than or
equal to the true mean accuracy. To estimate this probability we drew
105 random samples of combinations of N accuracies (one from each of
the N subjects) in a uniformly randomized way, and calculated the
percentile of the samples that had a mean greater or equal to the true
mean. This percentile is an approximation to the statistical significance
with a minimal p-value of 10−5.

Results

In this part we report the results of decoding object categories
from visual cortex using the surface-based searchlight. We report the
main results using surface-based searchlights of radius 9 mm defined
on the graymid surface in the middle of the gray matter. Differences
between the surface-based and volumetric methods are illustrated by
looking at the spatial specificity of the results. We present the
decoding results from surfaces of different cortical depths and their
combinations and, finally, compare the results for various sizes of
surface-based and volumetric searchlights.

Object decoding in surface-based and volumetric local patterns

For both the surface-based on the graymid and the volumetric
searchlight method object category could be decoded from regions in
the ventral occipito-temporal cortex (Fig. 3). Consistent with previous
findings (Carlson et al., 2003; Levy et al., 2001; Malach et al., 2002),
the category-specific information was located within the collateral
sulcus (CoS). While the surface-based decoding did not yield any
other significant region, the volumetric approach resulted in two
additional regions of significant decoding in earlier visual areas
(presumably V2 or V3). However, contrary to most previous studies
we did not find any object-specific information in patterns decoded
from the lateral surface of the occipital cortex (e.g. in the Lateral
Occipital Complex, LOC). This is presumably due to differences in the
stimulation paradigm (i.e. our study used objects that rotated within a
single trial).

Although the distribution of object information across the cortical
surface was similar in both volumetric and surface-based decoding,
there are important differences between the results derived from the
two searchlight techniques. Fig. 3 illustrates differences in the spatial
spread of the informative regions. On the one hand, the volumetric
searchlight showed larger significant regions. Some information was
found in regions where the surface-based searchlight did not reveal
any significant accuracy, as in early visual cortex. On the other hand,
closer examination of the region around the CoS reveals some
Please cite this article as: Chen, Y., et al., Cortical surface-based
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important differences. While the results from the surface-based
decoding were located in a single region within the CoS, the
significant regions of the volumetric decoding spread much further.
See also Supplementary Fig. S1, where the results are shown on the
flattened cortical surface. Fig. 4 shows the difference in spatial
specificity between two techniques. The significance maps are shown
on the folded surface (projected to the smoothed white–gray
boundary). In addition, the same maps are also illustrated on two
orthogonal slices of the anatomical volume (a coronal and a sagittal
cut through the CoS). The volumetric sampling caused the activation
to spread into the fusiform gyrus giving the impression of two
independent peaks. In contrast, the surface-based method located the
effects within the collateral sulcus. Note that although the region that
reached a significance value below p=0.001 (red area) is consider-
ably smaller in the surface-based searchlight, the most significant
parts showed a comparable effect (p=10−6).

Varying cortical depth of the searchlight

It seems intuitive to sample cortex using a surface reconstruction
that lies in the middle of the gray matter (graymid), which is between
1 and 4.5 mm thick (Fischl and Dale, 2000). As this thickness is of the
same size as the voxels of the functional scans (3×3×3 mm) the
searchlight decoding, NeuroImage (2010), doi:10.1016/j.neuro-
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Fig. 4. Comparison of spatial specificity between surface-based and volumetric decoding. Excerpt of the same decoding results as in Fig. 3 rendered on the white matter surface (A, D)
and overlaid on coronal (B, E) and sagittal (C, F) anatomical slices through the CoS. While the results obtained with the volumetric method (D, E, F) clearly spread through the
fusiform gyrus, the surface-based method (A, B, C) locates the effects only within the collateral sulcus. Note that the surface-based results are based on searchlights defined on the
graymid surface. This discrepancy in localization between the two methods is due to the spatial extent of the volumetric searchlight, which reaches across the white matter and
samples from within the collateral sulcus even if the seed voxel is not within the sulcus. Note that the peak statistic values are indistinguishable between the two methods.
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voxels within a surface searchlight will not completely cover the gray
matter. To investigate the effect of sampling the cortical surface at
varying depth, we ran a comparison analysis where we created three
different types of surface searchlight based on the white–gray (W)
boundary, the graymid (G) and the pial (P) surface respectively. The
extraction of the surface-based searchlight was identical to the initial
analysis (see Methods and materials) but using different surfaces.
Finally, in order to sample from different cortical depths simulta-
neously, combinations of these three surfaces (W–G, G–P and W–G–
P) were considered. Fig. 5 illustrates the results and compares them to
volumetric decoding. The p-maps clearly show that sampling at the
white matter (peak significance ppeak=8.9*10−6) boundary or at the
pial surface (ppeak=4.8*10−6) produced results inferior to the
graymid (ppeak=6.6*10−7). It is also worth noting that including
two or three surfaces produced results more similar to the volumetric
searchlight. The minimal p-values for the combinations are the
following (W–G: ppeak=2.3*10−5; G–P: ppeak=1.7*10−6; W–G–P:
ppeak=3.7 * 10−6) and for the volumetric searchlight (VOL:
ppeak=6.4*10−7). Note that the searchlights using different cortical
depth surfaces have considerable overlap (compare Fig. 5, bottom
left).

Influence of searchlight size on decoding

In order to investigate the influence of the searchlight size on the
decoding results, we analyzed the data for both the surface-based and
the volumetric searchlight for four different radii (6, 9, 12 and
15 mm). Fig. 6 summarizes these results. The area of significant
decoding increased as the searchlight radius increased in both cases.
Please cite this article as: Chen, Y., et al., Cortical surface-based
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However, this gradual increase in significant region was much more
restricted for the surface-based searchlight. Importantly, although the
size of the significant area increased gradually, the shape of the
significant area was highly conserved for the surface-based method.
For the volumetric searchlight the increase of the radius from 9 to
12 mm dramatically increased the size of the significant area. When
the searchlights became large (in particular at r=15 mm) the results
obtained by the two methods became more similar. The peak
accuracies for the two methods were again comparable and increased
as the searchlight radius increased. However, this increase was not
strictly monotonic for the surface-based searchlight (see Table 1).

Non-parametric statistical analysis on the group level

We also assessed the statistical significance of decoding accuracies
using a non-parametric method based on permutation tests. The
results from this analysis are given in Supplementary Fig. S3. The
significant regions obtained by this non-parametric method were
larger than the ones obtained by a t-test with the same threshold.
Importantly, the surface-based searchlight resulted in a higher spatial
specificity than the volumetric searchlight irrespective of which of the
two statistical analyses was used (see Supplementary Fig. S3).

Discussion

The surface-based searchlight technique is a new alternative to
3D-searchlight techniques (Haynes et al., 2007; Kriegeskorte et al.,
2006) that extract spherical voxel clusters as a basis for decoding at
each position of the brain. We tested the surface-based searchlight
searchlight decoding, NeuroImage (2010), doi:10.1016/j.neuro-
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Fig. 5. Surface searchlights at different cortical depths. The graphs illustrate the same region of the cortex as in Fig. 4. Uncorrected p-maps of classification accuracy are shown on the
inflated cortical surface for surface-based decoding (blue frames) and the volumetric searchlight (red frame). Top row: Results for searchlights extracted from single surfaces: the
white–gray boundary (W), the middle between the white–gray boundary and the pial surface (graymid: G) and the pial surface (P). Middle row: Combinations of surface-based
searchlight from two different cortical depths (white and graymid: W–G, graymid and pial: G–P). Bottom row: Combination of searchlights from all three cortical surfaces (W–G–P)
and volumetric searchlight (VOL, red frame). Insets sketch the surface or combination of surfaces used for the extraction of searchlights (white: white matter, gray: gray matter,
black: CSF, blue lines: surface-based searchlights, red disk: volumetric searchlight). All searchlights were first defined on the corresponding surfaces using the same radius. Then
searchlights from different cortical depths were combined to yield 3D cylindrical searchlights. All p-maps are equally scaled and colored. Only p-values pb0.001 are shown. The
minimum values of p (highest significance) for the individual maps are as follows (W: 8.9*10−6, G: 6.6*10−7, P: 4.8*10−6, W–G: 2.3*10−5, G–P: 1.7*10−6, W–G–P: 3.7*10−6, VOL:
6.4*10−7). The graph on the bottom right illustrates the average number of voxels that was included in the specific combination of searchlights.
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using SVM classifiers to decode categories of rotating objects. The
results from surface-based decoding were compared to the standard
volumetric searchlight on decoding sensitivity and spatial specificity.
Although both techniques gave similar results in terms of peak
statistical significance, the results from the surface-based methods
showed more spatial specificity.

Feature extraction for pattern classification

Broadly speaking, there are three major paradigms in fMRI
decoding which differ in their methods of feature extraction.

• First, there are approaches that try to extract the maximum amount
of information from the whole brain, treating all of the tens of
thousands of voxels as a single pattern vector in a high-dimensional
space (Mitchell et al., 2008; Mourao-Miranda et al., 2005). These
approaches are particularly efficient for decoding mental states
(“brain reading”). Even though the weight distribution of a whole-
Please cite this article as: Chen, Y., et al., Cortical surface-based
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brain classifier can provide information about the contribution of
different brain regions to the classification, the detailed neurophys-
iological origins of the fMRI-patterning are typically of minor
interest.

• Second, some methods look at the information contained in specific
regions of interest (Formisano et al., 2008; Haxby et al., 2001;
Haynes et al., 2005; Haynes and Rees, 2005; Kamitani and Tong,
2005). This is particularly useful if a clear hypothesis is given about
which cortical regions are informative (e.g. the early visual cortex is
selected as a ROI for low level visual experiments, as in (Haynes and
Rees, 2005; Kamitani and Tong, 2005).

• Third, searchlight methods evaluate local information in a spatially
unbiased fashion across the whole brain (Haynes et al., 2007;
Kriegeskorte et al., 2006).

The surface-based searchlight presented embodies a significant
refinement in searchlight techniques. The assumption underlying the
use of the searchlight method as a tool to extract patterns is that
searchlight decoding, NeuroImage (2010), doi:10.1016/j.neuro-
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Fig. 6. Effect of searchlight size. Uncorrected p-maps of classification accuracy are shown on the inflated cortical surface for surface-based decoding (left) and the volumetric
searchlight (right). All surface-based searchlights are extracted from the graymid surface. The radius of the searchlights increases from top to bottom (see insets). All p-maps are
equally scaled and colored (see color bars at the bottom). Only p-values (pb0.001) are shown. Bar plots on the right show the average number of voxels included in the searchlights.
Note that the scale of the bar plot is different for the two large radii (12 and 15 mm).
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information is processed locallywithin the cortex.However, asweexplain
above, the surface-based searchlight method respects cortical surface
topology and mitigates inappropriate combination of voxels within a
single searchlight. Two points which are close in three-dimensional voxel
space are not necessarily close in cortical space. By selecting the voxels
that are includedwithin a searchlight according to their distance along the
cortical surface it is possible to look at patterns within a local cortical
region. In fact, we have shown here that the surface-based searchlight
method results in a spatial distribution of decoding accuracies that we
think is spatiallymore accurate than thevolumetric approach. The reasons
why this might be so are discussed in the following.
Please cite this article as: Chen, Y., et al., Cortical surface-based
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Decoding of rotating objects in the collateral sulcus

Both surface-based and volumetric searchlight methods showed
that the CoS is the region where object identity can best be decoded.
However, most studies concerned with object representation report
specific responses to objects in the lateral occipital region as well
(Malach et al., 2002). Although LOC is often regarded as one of the
most important regions for object representation (Malach et al.,
1995), decoding the identity of rotating objects was not possible
within the LOC, irrespective of the searchlight method used. One
possible explanation for this discrepancy is the motion of the
searchlight decoding, NeuroImage (2010), doi:10.1016/j.neuro-
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Table 1
Peak values of significance from different sizes of searchlights (2D: surface-based
searchlight; 3D: volumetric searchlight).

Radius (mm) 6 9 12 15

p-values (2D) 1.9*10−6 1.6*10−7 1.5*10−5 8.4*10−7

p-values (3D) 1.3*10−6 6.4*10−7 2.3*10−7 1.2*10−7
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stimulus. Usually static objects are presented (see Grill-Spector and
Malach, 2004, for a review), and therefore the dynamic nature of the
stimulation might be the cause for the discrepancy. The area of
significant decoding accuracies is less restricted when different
rotation speeds are included (see Supplementary Fig. S2).

A note on statistical testing on the group level

Wehave tested the significance of the decoding accuracy using a t-test
across the subjects. However, the distribution of decoding accuracies
based on cross-validation may not be well approximated by a normal
distribution and might vary across subjects. Hence, a t-test might not be
valid for reporting the group level statistical significance. We therefore
conducted a non-parametric statistical analysis (Nichols and Holmes,
2002) in addition to the t-tests described above. The main finding of this
additional analysis was that significant regions from non-parametric
analysis were larger than those obtained by a t-test with the same
threshold. This suggested that for the current data the t-test was
conservative. Nevertheless, the spatial specificity of the results from the
surface-based method is higher than that of the volumetric method,
irrespective of the statistical analysis being used (see Supplementary Fig.
S3).

Comparing volumetric and surface-based methods

The comparison between the two searchlight methods has several
aspects which speak in favor of one or the other. Volumetric
searchlights contain many more voxels than surface-based search-
lights with the same radius. In particular, the number of voxels in the
volumetric searchlight grows with the cube of the radius, whereas the
number of voxels in the surface-based searchlight grows quadrati-
cally. In the case of a radius of 9 mm and fMRI voxel side lengths of
3 mm, the former has more than twice as many (85.5 vs. 40.2, mean
values across 12 subjects). More voxels might carrymore information,
but they might also contain more noise. In particular, if meaningful
fMRI activations are restricted to the gray matter, then most of the
additional voxels in a volumetric searchlight will introduce noise in
the classification. This is especially critical in fMRI, where often only
few training samples are available to train a classifier in a high-
dimensional space. In order to characterize the influence of the
searchlight size on decoding, we have compared several searchlight
sizes (see Fig. 6). Generally, we observed that the size of the
significant regions increased as expected for increased searchlight
size. Although it might seem trivial that an increased searchlight
increases the sensitivity because it includesmore voxels and therefore
more information, this is not necessarily the case. As explained above,
an increased searchlight size might also include more noisy voxels
and, due to the relatively few samples in the training set, it could lead
to an overfitting which will effectively decrease the decoding
accuracy. Importantly, over all tested sizes the surface-based
searchlight conserves the significant regions, which increase only
slightly at their border.

As illustrated in Fig. 4 (see also Fig. 2D), a volumetric searchlight
can also include gray matter voxels that are far away in cortical
distance. This can cause dislocation of patterns and spatial spreading
of activation if projected to the surface. In the case of the CoS region,
the volumetric searchlight carried information into a cortical region
Please cite this article as: Chen, Y., et al., Cortical surface-based
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that was, measured in cortical distance, relatively far from the place
where the information was actually represented. However, there are
also some regions (especially the two occipital peaks), where the
volumetric searchlight found information, whereas the surface-based
searchlight did not. There are several possible reasons for this
disparity:

• First, although we took great care in coregistering the functional to
the anatomical images, it is possible that the surfaces extracted from
the individual anatomical T1 images were not perfectly aligned with
the functional images of individual subjects. The reasons for such a
misalignment could be either different distortions in the functional
and anatomical MRI images, caused by different sequences, or some
errors in the segmentation and surface extraction process in
Freesurfer.

• Second, at the top of gyri and in the bank of sulci, the volumetric
searchlight covered a much larger region of gray matter than the
surface-based searchlight, which could give better classification
results.

• Third, although a normalization procedure is needed in both the
surface- and volume-based approaches, there are differences
between the two approaches that might affect the results. For the
surface-based searchlight coregistration of the EPI images to the
anatomical T1 is a necessary part of the analysis. The precise
selection of voxels that are used for the classification is directly
affected by this step of the normalization procedure. Spatial
normalization on the cortical surface is only possible if the
correspondence of functional voxels to the extracted surface is
known. In the volume-based decoding the coregistration is not
necessarily needed. In fact, it is common practice to directly
normalize the accuracy maps of the subjects to the EPI MNI
template for the standard volume-based decoding (Bode and
Haynes, 2009; Soon et al., 2008), which is not possible for the
surface-based searchlight. However, in order to minimize the
differences in the analysis between the two methods, we used the
same coregistration procedure for both searchlights here.

• Fourth, the surface mapping across subjects based on curvature
might not align functional activities perfectly and such misalign-
ments may compromise the statistical significance of group
analyses. Such a mismatch between the gyrification of cortex and
its functional architecture would affect the volumetric searchlight
much less, because it does not rely on any anatomical structure.
Compared to the surface-based searchlight, the volumetric search-
light might compensate for between-subject differences in the
association between gyrification and function better because it is
spatially more extended and potentially samples information from
more distal parts of cortex. The volumetric searchlight thusmight be
able to compensate to some extent for these discrepancies between
functional architecture and cortical folding. However, a surface-
based searchlight will result in a better spatial sensitivity. This holds
only if the alignment of functional and anatomical volumes and the
extraction of the cortical surface are precise.

What is the best size of searchlights for decoding?

An important choice that has to be made when applying a
searchlight technique is the choice of the size of the searchlight. It is
not possible to give a general advice for the “best” searchlight size,
because the question is inherently bound to the neural mechanism
under investigation, or more specifically, the expected compactness
and size of the underlying cortical representation. As shown in Fig. 6
and Table 1, the searchlight size has an effect on both the spatial
compactness of significant regions and the peak values of the
significance level. The significant area increased in both cases with
the searchlight radius, and so too did the peak values of significance
level, though not strictly monotonically. As in our study the major
searchlight decoding, NeuroImage (2010), doi:10.1016/j.neuro-
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concern is to delineate the fine functional structure of the inferior
temporal area in representing dynamic objects, we preferred the
relatively small size of 9 mm searchlight, with which a satisfactory
peak value of the significance level and a highly compacted
informative region were simultaneously achieved. If, however, we
were looking for any regions potentially involved in representing
objects, then larger searchlight sizes of 15 mm or even more might be
preferred, as such a size is less likely to miss weakly or widely
distributed information encoded in the cortical regions (e.g. the
occipital peaks shown by larger searchlight size and volumetric
method).

Which cortical depth is best suited for the extraction of searchlights?

Although all neurons are located within the gray matter, it is not
clear whether sampling in the middle between the white matter and
pial surface captures all the informative cortical activations. Inaccurate
segmentations, partial volume effects, unknown distributions of blood
vessels and cortical thickness factors might result in informative voxels
lying outside or at the border of the graymatter. Therefore, the selection
of a particular surface depth for sampling might influence the
classification results. Voxels containing a vertex equidistant from the
pial surface and the boundary betweenwhite and graymatter contain a
higher ratio of cortex than any other set of voxels. Thus, it seems
intuitive thatdecoding fromsearchlights definedon thegraymid surface
reconstruction would provide strongest accuracy and localization. The
thickness of the cortex varies between 1 and 4.5 mm, and the inter
subject standard deviation of the average cortical thickness is 0.5 mm
(Fischl and Dale, 2000).

High-field fMRI (with gradient echo EPI imaging) has shown that
the strongest BOLD signals in visual cortex are found in the upper
layers of cortex and around the pial surface (Jin and Kim, 2008). This
finding leads to the prediction that the best signals are measured by
sampling gray matter close to the pial surface. On the other hand, the
anatomy of cortical vasculature suggests exactly the opposite. Large
draining vessels are located at the pial surface (Duvernoy et al., 1981;
Weber et al., 2008). These large vessels supply a large region of cortex,
and therefore the BOLD signal around them is unlikely to incorporate
specific fine-grained patterns. This suggests that the cortex should be
sampled as far away as possible from the pial surface, i.e. at the white–
gray matter boundary. However, there is evidence that the BOLD
signal in large vessels might also contain highly specific information,
e.g. about the stimulated eye in visual experiments (Shmuel et al.,
2007). Here, we found that the surface decoding results are best for
surface-based searchlights extended along the graymid surface. This is
a compromise between the two extremes discussed above, although
success of this depth may be related to the ratio of cortex covered
rather than vascular or BOLD signal considerations. A recent paper has
interpreted the BOLD response of a voxel as a complex spatio-
temporally filtered version of the local neural firing (Kriegeskorte
et al., 2010). Our results suggest that the information contained in this
filtered signal is highest when the searchlights sample large parts of
the gray matter, as is the case for the searchlights based on the
graymid surface. Searchlights centered at the border of the gray
matter provide less information. This might be because they sample
large amounts of uninformative white matter or include large
draining vessels that might carry a less specific signal. It is important
to note here that the spatial resolution of 3 mm of the EPI volumes
does not allow us to distinguish cortical layers, since the whole
cortical sheet extends only over a few millimeters in depth.
Combining multiple surfaces (the W–G, G–P and W–G–P conditions
above) extends the searchlight into a third dimension forming a
cylindrical searchlight. As voxels on the G and P surfaces straddle the
grey matter boundary this increases the average number of voxels per
searchlight that sample from regions across sulci or small white
matter parts in gyri. This should lead to results more similar to the
Please cite this article as: Chen, Y., et al., Cortical surface-based
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volume based decoding. Indeed, the decoding results for combina-
tions of surface-searchlights were comparable to the volumetric
searchlight results.

We have shown that although surface-based and volumetric
searchlights produce superficially similar informative distribution on
the cortical surface, the surface-based searchlight methods provide a
more localized map. There seems to be a difference in spatial
specificity between the two methods. However, there might be
informative patterns which are missed by the surface-based search-
light method, if the functional activation pattern is not aligned with
the cortical surface extraction. In these cases, the volumetric
searchlight can still detect the information, because it samples across
a larger area and overlaps more with the activation pattern. Some of
suchmisalignments, like a poor EPI-T1 coregistration or EPI distortion,
could possibly be reduced by an improved spatial coregistration or
distortion correction. In summary, the surface-based searchlight
method offers a spatially unbiased approach to sampling information
along the cortical surface. It considers patterns that are local in cortical
coordinates. It avoids the accumulation of noise sources that lie
outside of the gray matter and samples information from voxels that
represent ‘true’ cortical neighbors.
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